ECDSA.sol 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778
  1. // SPDX-License-Identifier: MIT
  2. pragma solidity ^0.6.0;
  3. /**
  4. * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
  5. *
  6. * These functions can be used to verify that a message was signed by the holder
  7. * of the private keys of a given address.
  8. */
  9. library ECDSA {
  10. /**
  11. * @dev Returns the address that signed a hashed message (`hash`) with
  12. * `signature`. This address can then be used for verification purposes.
  13. *
  14. * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
  15. * this function rejects them by requiring the `s` value to be in the lower
  16. * half order, and the `v` value to be either 27 or 28.
  17. *
  18. * IMPORTANT: `hash` _must_ be the result of a hash operation for the
  19. * verification to be secure: it is possible to craft signatures that
  20. * recover to arbitrary addresses for non-hashed data. A safe way to ensure
  21. * this is by receiving a hash of the original message (which may otherwise
  22. * be too long), and then calling {toEthSignedMessageHash} on it.
  23. */
  24. function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
  25. // Check the signature length
  26. if (signature.length != 65) {
  27. revert("ECDSA: invalid signature length");
  28. }
  29. // Divide the signature in r, s and v variables
  30. bytes32 r;
  31. bytes32 s;
  32. uint8 v;
  33. // ecrecover takes the signature parameters, and the only way to get them
  34. // currently is to use assembly.
  35. // solhint-disable-next-line no-inline-assembly
  36. assembly {
  37. r := mload(add(signature, 0x20))
  38. s := mload(add(signature, 0x40))
  39. v := byte(0, mload(add(signature, 0x60)))
  40. }
  41. // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
  42. // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
  43. // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
  44. // signatures from current libraries generate a unique signature with an s-value in the lower half order.
  45. //
  46. // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
  47. // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
  48. // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
  49. // these malleable signatures as well.
  50. require(uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature 's' value");
  51. require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value");
  52. // If the signature is valid (and not malleable), return the signer address
  53. address signer = ecrecover(hash, v, r, s);
  54. require(signer != address(0), "ECDSA: invalid signature");
  55. return signer;
  56. }
  57. /**
  58. * @dev Returns an Ethereum Signed Message, created from a `hash`. This
  59. * replicates the behavior of the
  60. * https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`]
  61. * JSON-RPC method.
  62. *
  63. * See {recover}.
  64. */
  65. function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
  66. // 32 is the length in bytes of hash,
  67. // enforced by the type signature above
  68. return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
  69. }
  70. }