Math.sol 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421
  1. // SPDX-License-Identifier: MIT
  2. // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
  3. pragma solidity ^0.8.20;
  4. /**
  5. * @dev Standard math utilities missing in the Solidity language.
  6. */
  7. library Math {
  8. /**
  9. * @dev Muldiv operation overflow.
  10. */
  11. error MathOverflowedMulDiv();
  12. enum Rounding {
  13. Floor, // Toward negative infinity
  14. Ceil, // Toward positive infinity
  15. Trunc, // Toward zero
  16. Expand // Away from zero
  17. }
  18. /**
  19. * @dev Returns the addition of two unsigned integers, with an overflow flag.
  20. */
  21. function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  22. unchecked {
  23. uint256 c = a + b;
  24. if (c < a) return (false, 0);
  25. return (true, c);
  26. }
  27. }
  28. /**
  29. * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
  30. */
  31. function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  32. unchecked {
  33. if (b > a) return (false, 0);
  34. return (true, a - b);
  35. }
  36. }
  37. /**
  38. * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
  39. */
  40. function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  41. unchecked {
  42. // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
  43. // benefit is lost if 'b' is also tested.
  44. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
  45. if (a == 0) return (true, 0);
  46. uint256 c = a * b;
  47. if (c / a != b) return (false, 0);
  48. return (true, c);
  49. }
  50. }
  51. /**
  52. * @dev Returns the division of two unsigned integers, with a division by zero flag.
  53. */
  54. function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  55. unchecked {
  56. if (b == 0) return (false, 0);
  57. return (true, a / b);
  58. }
  59. }
  60. /**
  61. * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
  62. */
  63. function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  64. unchecked {
  65. if (b == 0) return (false, 0);
  66. return (true, a % b);
  67. }
  68. }
  69. /**
  70. * @dev Returns the largest of two numbers.
  71. */
  72. function max(uint256 a, uint256 b) internal pure returns (uint256) {
  73. return a > b ? a : b;
  74. }
  75. /**
  76. * @dev Returns the smallest of two numbers.
  77. */
  78. function min(uint256 a, uint256 b) internal pure returns (uint256) {
  79. return a < b ? a : b;
  80. }
  81. /**
  82. * @dev Returns the average of two numbers. The result is rounded towards
  83. * zero.
  84. */
  85. function average(uint256 a, uint256 b) internal pure returns (uint256) {
  86. // (a + b) / 2 can overflow.
  87. return (a & b) + (a ^ b) / 2;
  88. }
  89. /**
  90. * @dev Returns the ceiling of the division of two numbers.
  91. *
  92. * This differs from standard division with `/` in that it rounds towards infinity instead
  93. * of rounding towards zero.
  94. */
  95. function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
  96. if (b == 0) {
  97. // Guarantee the same behavior as in a regular Solidity division.
  98. return a / b;
  99. }
  100. // The following calculation ensures accurate ceiling division without overflow.
  101. // Since a is non-zero, (a - 1) / b will not overflow.
  102. // The largest possible result occurs when (a - 1) / b is type(uint256).max,
  103. // but the largest value we can obtain is type(uint256).max - 1, which happens
  104. // when a = type(uint256).max and b = 1.
  105. unchecked {
  106. return a == 0 ? 0 : (a - 1) / b + 1;
  107. }
  108. }
  109. /**
  110. * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
  111. * denominator == 0.
  112. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
  113. * Uniswap Labs also under MIT license.
  114. */
  115. function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
  116. unchecked {
  117. // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
  118. // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
  119. // variables such that product = prod1 * 2^256 + prod0.
  120. uint256 prod0 = x * y; // Least significant 256 bits of the product
  121. uint256 prod1; // Most significant 256 bits of the product
  122. assembly {
  123. let mm := mulmod(x, y, not(0))
  124. prod1 := sub(sub(mm, prod0), lt(mm, prod0))
  125. }
  126. // Handle non-overflow cases, 256 by 256 division.
  127. if (prod1 == 0) {
  128. // Solidity will revert if denominator == 0, unlike the div opcode on its own.
  129. // The surrounding unchecked block does not change this fact.
  130. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
  131. return prod0 / denominator;
  132. }
  133. // Make sure the result is less than 2^256. Also prevents denominator == 0.
  134. if (denominator <= prod1) {
  135. revert MathOverflowedMulDiv();
  136. }
  137. ///////////////////////////////////////////////
  138. // 512 by 256 division.
  139. ///////////////////////////////////////////////
  140. // Make division exact by subtracting the remainder from [prod1 prod0].
  141. uint256 remainder;
  142. assembly {
  143. // Compute remainder using mulmod.
  144. remainder := mulmod(x, y, denominator)
  145. // Subtract 256 bit number from 512 bit number.
  146. prod1 := sub(prod1, gt(remainder, prod0))
  147. prod0 := sub(prod0, remainder)
  148. }
  149. // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
  150. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
  151. uint256 twos = denominator & (0 - denominator);
  152. assembly {
  153. // Divide denominator by twos.
  154. denominator := div(denominator, twos)
  155. // Divide [prod1 prod0] by twos.
  156. prod0 := div(prod0, twos)
  157. // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
  158. twos := add(div(sub(0, twos), twos), 1)
  159. }
  160. // Shift in bits from prod1 into prod0.
  161. prod0 |= prod1 * twos;
  162. // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
  163. // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
  164. // four bits. That is, denominator * inv = 1 mod 2^4.
  165. uint256 inverse = (3 * denominator) ^ 2;
  166. // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
  167. // works in modular arithmetic, doubling the correct bits in each step.
  168. inverse *= 2 - denominator * inverse; // inverse mod 2^8
  169. inverse *= 2 - denominator * inverse; // inverse mod 2^16
  170. inverse *= 2 - denominator * inverse; // inverse mod 2^32
  171. inverse *= 2 - denominator * inverse; // inverse mod 2^64
  172. inverse *= 2 - denominator * inverse; // inverse mod 2^128
  173. inverse *= 2 - denominator * inverse; // inverse mod 2^256
  174. // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
  175. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
  176. // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
  177. // is no longer required.
  178. result = prod0 * inverse;
  179. return result;
  180. }
  181. }
  182. /**
  183. * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
  184. */
  185. function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
  186. uint256 result = mulDiv(x, y, denominator);
  187. if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
  188. result += 1;
  189. }
  190. return result;
  191. }
  192. /**
  193. * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
  194. * towards zero.
  195. *
  196. * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
  197. */
  198. function sqrt(uint256 a) internal pure returns (uint256) {
  199. if (a == 0) {
  200. return 0;
  201. }
  202. // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
  203. //
  204. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
  205. // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
  206. //
  207. // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
  208. // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
  209. // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
  210. //
  211. // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
  212. uint256 result = 1 << (log2(a) >> 1);
  213. // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
  214. // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
  215. // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
  216. // into the expected uint128 result.
  217. unchecked {
  218. result = (result + a / result) >> 1;
  219. result = (result + a / result) >> 1;
  220. result = (result + a / result) >> 1;
  221. result = (result + a / result) >> 1;
  222. result = (result + a / result) >> 1;
  223. result = (result + a / result) >> 1;
  224. result = (result + a / result) >> 1;
  225. return min(result, a / result);
  226. }
  227. }
  228. /**
  229. * @notice Calculates sqrt(a), following the selected rounding direction.
  230. */
  231. function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
  232. unchecked {
  233. uint256 result = sqrt(a);
  234. return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
  235. }
  236. }
  237. /**
  238. * @dev Return the log in base 2 of a positive value rounded towards zero.
  239. * Returns 0 if given 0.
  240. */
  241. function log2(uint256 value) internal pure returns (uint256) {
  242. uint256 result = 0;
  243. unchecked {
  244. if (value >> 128 > 0) {
  245. value >>= 128;
  246. result += 128;
  247. }
  248. if (value >> 64 > 0) {
  249. value >>= 64;
  250. result += 64;
  251. }
  252. if (value >> 32 > 0) {
  253. value >>= 32;
  254. result += 32;
  255. }
  256. if (value >> 16 > 0) {
  257. value >>= 16;
  258. result += 16;
  259. }
  260. if (value >> 8 > 0) {
  261. value >>= 8;
  262. result += 8;
  263. }
  264. if (value >> 4 > 0) {
  265. value >>= 4;
  266. result += 4;
  267. }
  268. if (value >> 2 > 0) {
  269. value >>= 2;
  270. result += 2;
  271. }
  272. if (value >> 1 > 0) {
  273. result += 1;
  274. }
  275. }
  276. return result;
  277. }
  278. /**
  279. * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
  280. * Returns 0 if given 0.
  281. */
  282. function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
  283. unchecked {
  284. uint256 result = log2(value);
  285. return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
  286. }
  287. }
  288. /**
  289. * @dev Return the log in base 10 of a positive value rounded towards zero.
  290. * Returns 0 if given 0.
  291. */
  292. function log10(uint256 value) internal pure returns (uint256) {
  293. uint256 result = 0;
  294. unchecked {
  295. if (value >= 10 ** 64) {
  296. value /= 10 ** 64;
  297. result += 64;
  298. }
  299. if (value >= 10 ** 32) {
  300. value /= 10 ** 32;
  301. result += 32;
  302. }
  303. if (value >= 10 ** 16) {
  304. value /= 10 ** 16;
  305. result += 16;
  306. }
  307. if (value >= 10 ** 8) {
  308. value /= 10 ** 8;
  309. result += 8;
  310. }
  311. if (value >= 10 ** 4) {
  312. value /= 10 ** 4;
  313. result += 4;
  314. }
  315. if (value >= 10 ** 2) {
  316. value /= 10 ** 2;
  317. result += 2;
  318. }
  319. if (value >= 10 ** 1) {
  320. result += 1;
  321. }
  322. }
  323. return result;
  324. }
  325. /**
  326. * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
  327. * Returns 0 if given 0.
  328. */
  329. function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
  330. unchecked {
  331. uint256 result = log10(value);
  332. return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
  333. }
  334. }
  335. /**
  336. * @dev Return the log in base 256 of a positive value rounded towards zero.
  337. * Returns 0 if given 0.
  338. *
  339. * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
  340. */
  341. function log256(uint256 value) internal pure returns (uint256) {
  342. uint256 result = 0;
  343. unchecked {
  344. if (value >> 128 > 0) {
  345. value >>= 128;
  346. result += 16;
  347. }
  348. if (value >> 64 > 0) {
  349. value >>= 64;
  350. result += 8;
  351. }
  352. if (value >> 32 > 0) {
  353. value >>= 32;
  354. result += 4;
  355. }
  356. if (value >> 16 > 0) {
  357. value >>= 16;
  358. result += 2;
  359. }
  360. if (value >> 8 > 0) {
  361. result += 1;
  362. }
  363. }
  364. return result;
  365. }
  366. /**
  367. * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
  368. * Returns 0 if given 0.
  369. */
  370. function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
  371. unchecked {
  372. uint256 result = log256(value);
  373. return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
  374. }
  375. }
  376. /**
  377. * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
  378. */
  379. function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
  380. return uint8(rounding) % 2 == 1;
  381. }
  382. }