123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369 |
- // SPDX-License-Identifier: MIT
- pragma solidity ^0.8.20;
- import {Math} from "../math/Math.sol";
- import {Errors} from "../Errors.sol";
- /**
- * @dev Implementation of secp256r1 verification and recovery functions.
- *
- * The secp256r1 curve (also known as P256) is a NIST standard curve with wide support in modern devices
- * and cryptographic standards. Some notable examples include Apple's Secure Enclave and Android's Keystore
- * as well as authentication protocols like FIDO2.
- *
- * Based on the original https://github.com/itsobvioustech/aa-passkeys-wallet/blob/d3d423f28a4d8dfcb203c7fa0c47f42592a7378e/src/Secp256r1.sol[implementation of itsobvioustech] (GNU General Public License v3.0).
- * Heavily inspired in https://github.com/maxrobot/elliptic-solidity/blob/c4bb1b6e8ae89534d8db3a6b3a6b52219100520f/contracts/Secp256r1.sol[maxrobot] and
- * https://github.com/tdrerup/elliptic-curve-solidity/blob/59a9c25957d4d190eff53b6610731d81a077a15e/contracts/curves/EllipticCurve.sol[tdrerup] implementations.
- *
- * _Available since v5.1._
- */
- library P256 {
- struct JPoint {
- uint256 x;
- uint256 y;
- uint256 z;
- }
- /// @dev Generator (x component)
- uint256 internal constant GX = 0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296;
- /// @dev Generator (y component)
- uint256 internal constant GY = 0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5;
- /// @dev P (size of the field)
- uint256 internal constant P = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
- /// @dev N (order of G)
- uint256 internal constant N = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551;
- /// @dev A parameter of the weierstrass equation
- uint256 internal constant A = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC;
- /// @dev B parameter of the weierstrass equation
- uint256 internal constant B = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B;
- /// @dev (P + 1) / 4. Useful to compute sqrt
- uint256 private constant P1DIV4 = 0x3fffffffc0000000400000000000000000000000400000000000000000000000;
- /// @dev N/2 for excluding higher order `s` values
- uint256 private constant HALF_N = 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3192a8;
- /**
- * @dev Verifies a secp256r1 signature using the RIP-7212 precompile and falls back to the Solidity implementation
- * if the precompile is not available. This version should work on all chains, but requires the deployment of more
- * bytecode.
- *
- * @param h - hashed message
- * @param r - signature half R
- * @param s - signature half S
- * @param qx - public key coordinate X
- * @param qy - public key coordinate Y
- *
- * IMPORTANT: This function disallows signatures where the `s` value is above `N/2` to prevent malleability.
- * To flip the `s` value, compute `s = N - s`.
- */
- function verify(bytes32 h, bytes32 r, bytes32 s, bytes32 qx, bytes32 qy) internal view returns (bool) {
- (bool valid, bool supported) = _tryVerifyNative(h, r, s, qx, qy);
- return supported ? valid : verifySolidity(h, r, s, qx, qy);
- }
- /**
- * @dev Same as {verify}, but it will revert if the required precompile is not available.
- *
- * Make sure any logic (code or precompile) deployed at that address is the expected one,
- * otherwise the returned value may be misinterpreted as a positive boolean.
- */
- function verifyNative(bytes32 h, bytes32 r, bytes32 s, bytes32 qx, bytes32 qy) internal view returns (bool) {
- (bool valid, bool supported) = _tryVerifyNative(h, r, s, qx, qy);
- if (supported) {
- return valid;
- } else {
- revert Errors.MissingPrecompile(address(0x100));
- }
- }
- /**
- * @dev Same as {verify}, but it will return false if the required precompile is not available.
- */
- function _tryVerifyNative(
- bytes32 h,
- bytes32 r,
- bytes32 s,
- bytes32 qx,
- bytes32 qy
- ) private view returns (bool valid, bool supported) {
- if (!_isProperSignature(r, s) || !isValidPublicKey(qx, qy)) {
- return (false, true); // signature is invalid, and its not because the precompile is missing
- }
- (bool success, bytes memory returndata) = address(0x100).staticcall(abi.encode(h, r, s, qx, qy));
- return (success && returndata.length == 0x20) ? (abi.decode(returndata, (bool)), true) : (false, false);
- }
- /**
- * @dev Same as {verify}, but only the Solidity implementation is used.
- */
- function verifySolidity(bytes32 h, bytes32 r, bytes32 s, bytes32 qx, bytes32 qy) internal view returns (bool) {
- if (!_isProperSignature(r, s) || !isValidPublicKey(qx, qy)) {
- return false;
- }
- JPoint[16] memory points = _preComputeJacobianPoints(uint256(qx), uint256(qy));
- uint256 w = Math.invModPrime(uint256(s), N);
- uint256 u1 = mulmod(uint256(h), w, N);
- uint256 u2 = mulmod(uint256(r), w, N);
- (uint256 x, ) = _jMultShamir(points, u1, u2);
- return ((x % N) == uint256(r));
- }
- /**
- * @dev Public key recovery
- *
- * @param h - hashed message
- * @param v - signature recovery param
- * @param r - signature half R
- * @param s - signature half S
- *
- * IMPORTANT: This function disallows signatures where the `s` value is above `N/2` to prevent malleability.
- * To flip the `s` value, compute `s = N - s` and `v = 1 - v` if (`v = 0 | 1`).
- */
- function recovery(bytes32 h, uint8 v, bytes32 r, bytes32 s) internal view returns (bytes32 x, bytes32 y) {
- if (!_isProperSignature(r, s) || v > 1) {
- return (0, 0);
- }
- uint256 p = P; // cache P on the stack
- uint256 rx = uint256(r);
- uint256 ry2 = addmod(mulmod(addmod(mulmod(rx, rx, p), A, p), rx, p), B, p); // weierstrass equation y² = x³ + a.x + b
- uint256 ry = Math.modExp(ry2, P1DIV4, p); // This formula for sqrt work because P ≡ 3 (mod 4)
- if (mulmod(ry, ry, p) != ry2) return (0, 0); // Sanity check
- if (ry % 2 != v) ry = p - ry;
- JPoint[16] memory points = _preComputeJacobianPoints(rx, ry);
- uint256 w = Math.invModPrime(uint256(r), N);
- uint256 u1 = mulmod(N - (uint256(h) % N), w, N);
- uint256 u2 = mulmod(uint256(s), w, N);
- (uint256 xU, uint256 yU) = _jMultShamir(points, u1, u2);
- return (bytes32(xU), bytes32(yU));
- }
- /**
- * @dev Checks if (x, y) are valid coordinates of a point on the curve.
- * In particular this function checks that x < P and y < P.
- */
- function isValidPublicKey(bytes32 x, bytes32 y) internal pure returns (bool result) {
- assembly ("memory-safe") {
- let p := P
- let lhs := mulmod(y, y, p) // y^2
- let rhs := addmod(mulmod(addmod(mulmod(x, x, p), A, p), x, p), B, p) // ((x^2 + a) * x) + b = x^3 + ax + b
- result := and(and(lt(x, p), lt(y, p)), eq(lhs, rhs)) // Should conform with the Weierstrass equation
- }
- }
- /**
- * @dev Checks if (r, s) is a proper signature.
- * In particular, this checks that `s` is in the "lower-range", making the signature non-malleable.
- */
- function _isProperSignature(bytes32 r, bytes32 s) private pure returns (bool) {
- return uint256(r) > 0 && uint256(r) < N && uint256(s) > 0 && uint256(s) <= HALF_N;
- }
- /**
- * @dev Reduce from jacobian to affine coordinates
- * @param jx - jacobian coordinate x
- * @param jy - jacobian coordinate y
- * @param jz - jacobian coordinate z
- * @return ax - affine coordinate x
- * @return ay - affine coordinate y
- */
- function _affineFromJacobian(uint256 jx, uint256 jy, uint256 jz) private view returns (uint256 ax, uint256 ay) {
- if (jz == 0) return (0, 0);
- uint256 p = P; // cache P on the stack
- uint256 zinv = Math.invModPrime(jz, p);
- assembly ("memory-safe") {
- let zzinv := mulmod(zinv, zinv, p)
- ax := mulmod(jx, zzinv, p)
- ay := mulmod(jy, mulmod(zzinv, zinv, p), p)
- }
- }
- /**
- * @dev Point addition on the jacobian coordinates
- * Reference: https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-1998-cmo-2
- *
- * Note that:
- *
- * - `addition-add-1998-cmo-2` doesn't support identical input points. This version is modified to use
- * the `h` and `r` values computed by `addition-add-1998-cmo-2` to detect identical inputs, and fallback to
- * `doubling-dbl-1998-cmo-2` if needed.
- * - if one of the points is at infinity (i.e. `z=0`), the result is undefined.
- */
- function _jAdd(
- JPoint memory p1,
- uint256 x2,
- uint256 y2,
- uint256 z2
- ) private pure returns (uint256 rx, uint256 ry, uint256 rz) {
- assembly ("memory-safe") {
- let p := P
- let z1 := mload(add(p1, 0x40))
- let zz1 := mulmod(z1, z1, p) // zz1 = z1²
- let s1 := mulmod(mload(add(p1, 0x20)), mulmod(mulmod(z2, z2, p), z2, p), p) // s1 = y1*z2³
- let r := addmod(mulmod(y2, mulmod(zz1, z1, p), p), sub(p, s1), p) // r = s2-s1 = y2*z1³-s1 = y2*z1³-y1*z2³
- let u1 := mulmod(mload(p1), mulmod(z2, z2, p), p) // u1 = x1*z2²
- let h := addmod(mulmod(x2, zz1, p), sub(p, u1), p) // h = u2-u1 = x2*z1²-u1 = x2*z1²-x1*z2²
- // detect edge cases where inputs are identical
- switch and(iszero(r), iszero(h))
- // case 0: points are different
- case 0 {
- let hh := mulmod(h, h, p) // h²
- // x' = r²-h³-2*u1*h²
- rx := addmod(
- addmod(mulmod(r, r, p), sub(p, mulmod(h, hh, p)), p),
- sub(p, mulmod(2, mulmod(u1, hh, p), p)),
- p
- )
- // y' = r*(u1*h²-x')-s1*h³
- ry := addmod(
- mulmod(r, addmod(mulmod(u1, hh, p), sub(p, rx), p), p),
- sub(p, mulmod(s1, mulmod(h, hh, p), p)),
- p
- )
- // z' = h*z1*z2
- rz := mulmod(h, mulmod(z1, z2, p), p)
- }
- // case 1: points are equal
- case 1 {
- let x := x2
- let y := y2
- let z := z2
- let yy := mulmod(y, y, p)
- let zz := mulmod(z, z, p)
- let m := addmod(mulmod(3, mulmod(x, x, p), p), mulmod(A, mulmod(zz, zz, p), p), p) // m = 3*x²+a*z⁴
- let s := mulmod(4, mulmod(x, yy, p), p) // s = 4*x*y²
- // x' = t = m²-2*s
- rx := addmod(mulmod(m, m, p), sub(p, mulmod(2, s, p)), p)
- // y' = m*(s-t)-8*y⁴ = m*(s-x')-8*y⁴
- // cut the computation to avoid stack too deep
- let rytmp1 := sub(p, mulmod(8, mulmod(yy, yy, p), p)) // -8*y⁴
- let rytmp2 := addmod(s, sub(p, rx), p) // s-x'
- ry := addmod(mulmod(m, rytmp2, p), rytmp1, p) // m*(s-x')-8*y⁴
- // z' = 2*y*z
- rz := mulmod(2, mulmod(y, z, p), p)
- }
- }
- }
- /**
- * @dev Point doubling on the jacobian coordinates
- * Reference: https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2
- */
- function _jDouble(uint256 x, uint256 y, uint256 z) private pure returns (uint256 rx, uint256 ry, uint256 rz) {
- assembly ("memory-safe") {
- let p := P
- let yy := mulmod(y, y, p)
- let zz := mulmod(z, z, p)
- let m := addmod(mulmod(3, mulmod(x, x, p), p), mulmod(A, mulmod(zz, zz, p), p), p) // m = 3*x²+a*z⁴
- let s := mulmod(4, mulmod(x, yy, p), p) // s = 4*x*y²
- // x' = t = m²-2*s
- rx := addmod(mulmod(m, m, p), sub(p, mulmod(2, s, p)), p)
- // y' = m*(s-t)-8*y⁴ = m*(s-x')-8*y⁴
- ry := addmod(mulmod(m, addmod(s, sub(p, rx), p), p), sub(p, mulmod(8, mulmod(yy, yy, p), p)), p)
- // z' = 2*y*z
- rz := mulmod(2, mulmod(y, z, p), p)
- }
- }
- /**
- * @dev Compute G·u1 + P·u2 using the precomputed points for G and P (see {_preComputeJacobianPoints}).
- *
- * Uses Strauss Shamir trick for EC multiplication
- * https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method
- *
- * We optimize this for 2 bits at a time rather than a single bit. The individual points for a single pass are
- * precomputed. Overall this reduces the number of additions while keeping the same number of
- * doublings
- */
- function _jMultShamir(
- JPoint[16] memory points,
- uint256 u1,
- uint256 u2
- ) private view returns (uint256 rx, uint256 ry) {
- uint256 x = 0;
- uint256 y = 0;
- uint256 z = 0;
- unchecked {
- for (uint256 i = 0; i < 128; ++i) {
- if (z > 0) {
- (x, y, z) = _jDouble(x, y, z);
- (x, y, z) = _jDouble(x, y, z);
- }
- // Read 2 bits of u1, and 2 bits of u2. Combining the two gives the lookup index in the table.
- uint256 pos = ((u1 >> 252) & 0xc) | ((u2 >> 254) & 0x3);
- // Points that have z = 0 are points at infinity. They are the additive 0 of the group
- // - if the lookup point is a 0, we can skip it
- // - otherwise:
- // - if the current point (x, y, z) is 0, we use the lookup point as our new value (0+P=P)
- // - if the current point (x, y, z) is not 0, both points are valid and we can use `_jAdd`
- if (points[pos].z != 0) {
- if (z == 0) {
- (x, y, z) = (points[pos].x, points[pos].y, points[pos].z);
- } else {
- (x, y, z) = _jAdd(points[pos], x, y, z);
- }
- }
- u1 <<= 2;
- u2 <<= 2;
- }
- }
- return _affineFromJacobian(x, y, z);
- }
- /**
- * @dev Precompute a matrice of useful jacobian points associated with a given P. This can be seen as a 4x4 matrix
- * that contains combination of P and G (generator) up to 3 times each. See the table below:
- *
- * ┌────┬─────────────────────┐
- * │ i │ 0 1 2 3 │
- * ├────┼─────────────────────┤
- * │ 0 │ 0 p 2p 3p │
- * │ 4 │ g g+p g+2p g+3p │
- * │ 8 │ 2g 2g+p 2g+2p 2g+3p │
- * │ 12 │ 3g 3g+p 3g+2p 3g+3p │
- * └────┴─────────────────────┘
- *
- * Note that `_jAdd` (and thus `_jAddPoint`) does not handle the case where one of the inputs is a point at
- * infinity (z = 0). However, we know that since `N ≡ 1 mod 2` and `N ≡ 1 mod 3`, there is no point P such that
- * 2P = 0 or 3P = 0. This guarantees that g, 2g, 3g, p, 2p, 3p are all non-zero, and that all `_jAddPoint` calls
- * have valid inputs.
- */
- function _preComputeJacobianPoints(uint256 px, uint256 py) private pure returns (JPoint[16] memory points) {
- points[0x00] = JPoint(0, 0, 0); // 0,0
- points[0x01] = JPoint(px, py, 1); // 1,0 (p)
- points[0x04] = JPoint(GX, GY, 1); // 0,1 (g)
- points[0x02] = _jDoublePoint(points[0x01]); // 2,0 (2p)
- points[0x08] = _jDoublePoint(points[0x04]); // 0,2 (2g)
- points[0x03] = _jAddPoint(points[0x01], points[0x02]); // 3,0 (p+2p = 3p)
- points[0x05] = _jAddPoint(points[0x01], points[0x04]); // 1,1 (p+g)
- points[0x06] = _jAddPoint(points[0x02], points[0x04]); // 2,1 (2p+g)
- points[0x07] = _jAddPoint(points[0x03], points[0x04]); // 3,1 (3p+g)
- points[0x09] = _jAddPoint(points[0x01], points[0x08]); // 1,2 (p+2g)
- points[0x0a] = _jAddPoint(points[0x02], points[0x08]); // 2,2 (2p+2g)
- points[0x0b] = _jAddPoint(points[0x03], points[0x08]); // 3,2 (3p+2g)
- points[0x0c] = _jAddPoint(points[0x04], points[0x08]); // 0,3 (g+2g = 3g)
- points[0x0d] = _jAddPoint(points[0x01], points[0x0c]); // 1,3 (p+3g)
- points[0x0e] = _jAddPoint(points[0x02], points[0x0c]); // 2,3 (2p+3g)
- points[0x0f] = _jAddPoint(points[0x03], points[0x0c]); // 3,3 (3p+3g)
- }
- function _jAddPoint(JPoint memory p1, JPoint memory p2) private pure returns (JPoint memory) {
- (uint256 x, uint256 y, uint256 z) = _jAdd(p1, p2.x, p2.y, p2.z);
- return JPoint(x, y, z);
- }
- function _jDoublePoint(JPoint memory p) private pure returns (JPoint memory) {
- (uint256 x, uint256 y, uint256 z) = _jDouble(p.x, p.y, p.z);
- return JPoint(x, y, z);
- }
- }
|