P256.sol 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369
  1. // SPDX-License-Identifier: MIT
  2. pragma solidity ^0.8.20;
  3. import {Math} from "../math/Math.sol";
  4. import {Errors} from "../Errors.sol";
  5. /**
  6. * @dev Implementation of secp256r1 verification and recovery functions.
  7. *
  8. * The secp256r1 curve (also known as P256) is a NIST standard curve with wide support in modern devices
  9. * and cryptographic standards. Some notable examples include Apple's Secure Enclave and Android's Keystore
  10. * as well as authentication protocols like FIDO2.
  11. *
  12. * Based on the original https://github.com/itsobvioustech/aa-passkeys-wallet/blob/d3d423f28a4d8dfcb203c7fa0c47f42592a7378e/src/Secp256r1.sol[implementation of itsobvioustech] (GNU General Public License v3.0).
  13. * Heavily inspired in https://github.com/maxrobot/elliptic-solidity/blob/c4bb1b6e8ae89534d8db3a6b3a6b52219100520f/contracts/Secp256r1.sol[maxrobot] and
  14. * https://github.com/tdrerup/elliptic-curve-solidity/blob/59a9c25957d4d190eff53b6610731d81a077a15e/contracts/curves/EllipticCurve.sol[tdrerup] implementations.
  15. *
  16. * _Available since v5.1._
  17. */
  18. library P256 {
  19. struct JPoint {
  20. uint256 x;
  21. uint256 y;
  22. uint256 z;
  23. }
  24. /// @dev Generator (x component)
  25. uint256 internal constant GX = 0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296;
  26. /// @dev Generator (y component)
  27. uint256 internal constant GY = 0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5;
  28. /// @dev P (size of the field)
  29. uint256 internal constant P = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
  30. /// @dev N (order of G)
  31. uint256 internal constant N = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551;
  32. /// @dev A parameter of the weierstrass equation
  33. uint256 internal constant A = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC;
  34. /// @dev B parameter of the weierstrass equation
  35. uint256 internal constant B = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B;
  36. /// @dev (P + 1) / 4. Useful to compute sqrt
  37. uint256 private constant P1DIV4 = 0x3fffffffc0000000400000000000000000000000400000000000000000000000;
  38. /// @dev N/2 for excluding higher order `s` values
  39. uint256 private constant HALF_N = 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3192a8;
  40. /**
  41. * @dev Verifies a secp256r1 signature using the RIP-7212 precompile and falls back to the Solidity implementation
  42. * if the precompile is not available. This version should work on all chains, but requires the deployment of more
  43. * bytecode.
  44. *
  45. * @param h - hashed message
  46. * @param r - signature half R
  47. * @param s - signature half S
  48. * @param qx - public key coordinate X
  49. * @param qy - public key coordinate Y
  50. *
  51. * IMPORTANT: This function disallows signatures where the `s` value is above `N/2` to prevent malleability.
  52. * To flip the `s` value, compute `s = N - s`.
  53. */
  54. function verify(bytes32 h, bytes32 r, bytes32 s, bytes32 qx, bytes32 qy) internal view returns (bool) {
  55. (bool valid, bool supported) = _tryVerifyNative(h, r, s, qx, qy);
  56. return supported ? valid : verifySolidity(h, r, s, qx, qy);
  57. }
  58. /**
  59. * @dev Same as {verify}, but it will revert if the required precompile is not available.
  60. *
  61. * Make sure any logic (code or precompile) deployed at that address is the expected one,
  62. * otherwise the returned value may be misinterpreted as a positive boolean.
  63. */
  64. function verifyNative(bytes32 h, bytes32 r, bytes32 s, bytes32 qx, bytes32 qy) internal view returns (bool) {
  65. (bool valid, bool supported) = _tryVerifyNative(h, r, s, qx, qy);
  66. if (supported) {
  67. return valid;
  68. } else {
  69. revert Errors.MissingPrecompile(address(0x100));
  70. }
  71. }
  72. /**
  73. * @dev Same as {verify}, but it will return false if the required precompile is not available.
  74. */
  75. function _tryVerifyNative(
  76. bytes32 h,
  77. bytes32 r,
  78. bytes32 s,
  79. bytes32 qx,
  80. bytes32 qy
  81. ) private view returns (bool valid, bool supported) {
  82. if (!_isProperSignature(r, s) || !isValidPublicKey(qx, qy)) {
  83. return (false, true); // signature is invalid, and its not because the precompile is missing
  84. }
  85. (bool success, bytes memory returndata) = address(0x100).staticcall(abi.encode(h, r, s, qx, qy));
  86. return (success && returndata.length == 0x20) ? (abi.decode(returndata, (bool)), true) : (false, false);
  87. }
  88. /**
  89. * @dev Same as {verify}, but only the Solidity implementation is used.
  90. */
  91. function verifySolidity(bytes32 h, bytes32 r, bytes32 s, bytes32 qx, bytes32 qy) internal view returns (bool) {
  92. if (!_isProperSignature(r, s) || !isValidPublicKey(qx, qy)) {
  93. return false;
  94. }
  95. JPoint[16] memory points = _preComputeJacobianPoints(uint256(qx), uint256(qy));
  96. uint256 w = Math.invModPrime(uint256(s), N);
  97. uint256 u1 = mulmod(uint256(h), w, N);
  98. uint256 u2 = mulmod(uint256(r), w, N);
  99. (uint256 x, ) = _jMultShamir(points, u1, u2);
  100. return ((x % N) == uint256(r));
  101. }
  102. /**
  103. * @dev Public key recovery
  104. *
  105. * @param h - hashed message
  106. * @param v - signature recovery param
  107. * @param r - signature half R
  108. * @param s - signature half S
  109. *
  110. * IMPORTANT: This function disallows signatures where the `s` value is above `N/2` to prevent malleability.
  111. * To flip the `s` value, compute `s = N - s` and `v = 1 - v` if (`v = 0 | 1`).
  112. */
  113. function recovery(bytes32 h, uint8 v, bytes32 r, bytes32 s) internal view returns (bytes32 x, bytes32 y) {
  114. if (!_isProperSignature(r, s) || v > 1) {
  115. return (0, 0);
  116. }
  117. uint256 p = P; // cache P on the stack
  118. uint256 rx = uint256(r);
  119. uint256 ry2 = addmod(mulmod(addmod(mulmod(rx, rx, p), A, p), rx, p), B, p); // weierstrass equation y² = x³ + a.x + b
  120. uint256 ry = Math.modExp(ry2, P1DIV4, p); // This formula for sqrt work because P ≡ 3 (mod 4)
  121. if (mulmod(ry, ry, p) != ry2) return (0, 0); // Sanity check
  122. if (ry % 2 != v) ry = p - ry;
  123. JPoint[16] memory points = _preComputeJacobianPoints(rx, ry);
  124. uint256 w = Math.invModPrime(uint256(r), N);
  125. uint256 u1 = mulmod(N - (uint256(h) % N), w, N);
  126. uint256 u2 = mulmod(uint256(s), w, N);
  127. (uint256 xU, uint256 yU) = _jMultShamir(points, u1, u2);
  128. return (bytes32(xU), bytes32(yU));
  129. }
  130. /**
  131. * @dev Checks if (x, y) are valid coordinates of a point on the curve.
  132. * In particular this function checks that x < P and y < P.
  133. */
  134. function isValidPublicKey(bytes32 x, bytes32 y) internal pure returns (bool result) {
  135. assembly ("memory-safe") {
  136. let p := P
  137. let lhs := mulmod(y, y, p) // y^2
  138. let rhs := addmod(mulmod(addmod(mulmod(x, x, p), A, p), x, p), B, p) // ((x^2 + a) * x) + b = x^3 + ax + b
  139. result := and(and(lt(x, p), lt(y, p)), eq(lhs, rhs)) // Should conform with the Weierstrass equation
  140. }
  141. }
  142. /**
  143. * @dev Checks if (r, s) is a proper signature.
  144. * In particular, this checks that `s` is in the "lower-range", making the signature non-malleable.
  145. */
  146. function _isProperSignature(bytes32 r, bytes32 s) private pure returns (bool) {
  147. return uint256(r) > 0 && uint256(r) < N && uint256(s) > 0 && uint256(s) <= HALF_N;
  148. }
  149. /**
  150. * @dev Reduce from jacobian to affine coordinates
  151. * @param jx - jacobian coordinate x
  152. * @param jy - jacobian coordinate y
  153. * @param jz - jacobian coordinate z
  154. * @return ax - affine coordinate x
  155. * @return ay - affine coordinate y
  156. */
  157. function _affineFromJacobian(uint256 jx, uint256 jy, uint256 jz) private view returns (uint256 ax, uint256 ay) {
  158. if (jz == 0) return (0, 0);
  159. uint256 p = P; // cache P on the stack
  160. uint256 zinv = Math.invModPrime(jz, p);
  161. assembly ("memory-safe") {
  162. let zzinv := mulmod(zinv, zinv, p)
  163. ax := mulmod(jx, zzinv, p)
  164. ay := mulmod(jy, mulmod(zzinv, zinv, p), p)
  165. }
  166. }
  167. /**
  168. * @dev Point addition on the jacobian coordinates
  169. * Reference: https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-1998-cmo-2
  170. *
  171. * Note that:
  172. *
  173. * - `addition-add-1998-cmo-2` doesn't support identical input points. This version is modified to use
  174. * the `h` and `r` values computed by `addition-add-1998-cmo-2` to detect identical inputs, and fallback to
  175. * `doubling-dbl-1998-cmo-2` if needed.
  176. * - if one of the points is at infinity (i.e. `z=0`), the result is undefined.
  177. */
  178. function _jAdd(
  179. JPoint memory p1,
  180. uint256 x2,
  181. uint256 y2,
  182. uint256 z2
  183. ) private pure returns (uint256 rx, uint256 ry, uint256 rz) {
  184. assembly ("memory-safe") {
  185. let p := P
  186. let z1 := mload(add(p1, 0x40))
  187. let zz1 := mulmod(z1, z1, p) // zz1 = z1²
  188. let s1 := mulmod(mload(add(p1, 0x20)), mulmod(mulmod(z2, z2, p), z2, p), p) // s1 = y1*z2³
  189. let r := addmod(mulmod(y2, mulmod(zz1, z1, p), p), sub(p, s1), p) // r = s2-s1 = y2*z1³-s1 = y2*z1³-y1*z2³
  190. let u1 := mulmod(mload(p1), mulmod(z2, z2, p), p) // u1 = x1*z2²
  191. let h := addmod(mulmod(x2, zz1, p), sub(p, u1), p) // h = u2-u1 = x2*z1²-u1 = x2*z1²-x1*z2²
  192. // detect edge cases where inputs are identical
  193. switch and(iszero(r), iszero(h))
  194. // case 0: points are different
  195. case 0 {
  196. let hh := mulmod(h, h, p) // h²
  197. // x' = r²-h³-2*u1*h²
  198. rx := addmod(
  199. addmod(mulmod(r, r, p), sub(p, mulmod(h, hh, p)), p),
  200. sub(p, mulmod(2, mulmod(u1, hh, p), p)),
  201. p
  202. )
  203. // y' = r*(u1*h²-x')-s1*h³
  204. ry := addmod(
  205. mulmod(r, addmod(mulmod(u1, hh, p), sub(p, rx), p), p),
  206. sub(p, mulmod(s1, mulmod(h, hh, p), p)),
  207. p
  208. )
  209. // z' = h*z1*z2
  210. rz := mulmod(h, mulmod(z1, z2, p), p)
  211. }
  212. // case 1: points are equal
  213. case 1 {
  214. let x := x2
  215. let y := y2
  216. let z := z2
  217. let yy := mulmod(y, y, p)
  218. let zz := mulmod(z, z, p)
  219. let m := addmod(mulmod(3, mulmod(x, x, p), p), mulmod(A, mulmod(zz, zz, p), p), p) // m = 3*x²+a*z⁴
  220. let s := mulmod(4, mulmod(x, yy, p), p) // s = 4*x*y²
  221. // x' = t = m²-2*s
  222. rx := addmod(mulmod(m, m, p), sub(p, mulmod(2, s, p)), p)
  223. // y' = m*(s-t)-8*y⁴ = m*(s-x')-8*y⁴
  224. // cut the computation to avoid stack too deep
  225. let rytmp1 := sub(p, mulmod(8, mulmod(yy, yy, p), p)) // -8*y⁴
  226. let rytmp2 := addmod(s, sub(p, rx), p) // s-x'
  227. ry := addmod(mulmod(m, rytmp2, p), rytmp1, p) // m*(s-x')-8*y⁴
  228. // z' = 2*y*z
  229. rz := mulmod(2, mulmod(y, z, p), p)
  230. }
  231. }
  232. }
  233. /**
  234. * @dev Point doubling on the jacobian coordinates
  235. * Reference: https://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2
  236. */
  237. function _jDouble(uint256 x, uint256 y, uint256 z) private pure returns (uint256 rx, uint256 ry, uint256 rz) {
  238. assembly ("memory-safe") {
  239. let p := P
  240. let yy := mulmod(y, y, p)
  241. let zz := mulmod(z, z, p)
  242. let m := addmod(mulmod(3, mulmod(x, x, p), p), mulmod(A, mulmod(zz, zz, p), p), p) // m = 3*x²+a*z⁴
  243. let s := mulmod(4, mulmod(x, yy, p), p) // s = 4*x*y²
  244. // x' = t = m²-2*s
  245. rx := addmod(mulmod(m, m, p), sub(p, mulmod(2, s, p)), p)
  246. // y' = m*(s-t)-8*y⁴ = m*(s-x')-8*y⁴
  247. ry := addmod(mulmod(m, addmod(s, sub(p, rx), p), p), sub(p, mulmod(8, mulmod(yy, yy, p), p)), p)
  248. // z' = 2*y*z
  249. rz := mulmod(2, mulmod(y, z, p), p)
  250. }
  251. }
  252. /**
  253. * @dev Compute G·u1 + P·u2 using the precomputed points for G and P (see {_preComputeJacobianPoints}).
  254. *
  255. * Uses Strauss Shamir trick for EC multiplication
  256. * https://stackoverflow.com/questions/50993471/ec-scalar-multiplication-with-strauss-shamir-method
  257. *
  258. * We optimize this for 2 bits at a time rather than a single bit. The individual points for a single pass are
  259. * precomputed. Overall this reduces the number of additions while keeping the same number of
  260. * doublings
  261. */
  262. function _jMultShamir(
  263. JPoint[16] memory points,
  264. uint256 u1,
  265. uint256 u2
  266. ) private view returns (uint256 rx, uint256 ry) {
  267. uint256 x = 0;
  268. uint256 y = 0;
  269. uint256 z = 0;
  270. unchecked {
  271. for (uint256 i = 0; i < 128; ++i) {
  272. if (z > 0) {
  273. (x, y, z) = _jDouble(x, y, z);
  274. (x, y, z) = _jDouble(x, y, z);
  275. }
  276. // Read 2 bits of u1, and 2 bits of u2. Combining the two gives the lookup index in the table.
  277. uint256 pos = ((u1 >> 252) & 0xc) | ((u2 >> 254) & 0x3);
  278. // Points that have z = 0 are points at infinity. They are the additive 0 of the group
  279. // - if the lookup point is a 0, we can skip it
  280. // - otherwise:
  281. // - if the current point (x, y, z) is 0, we use the lookup point as our new value (0+P=P)
  282. // - if the current point (x, y, z) is not 0, both points are valid and we can use `_jAdd`
  283. if (points[pos].z != 0) {
  284. if (z == 0) {
  285. (x, y, z) = (points[pos].x, points[pos].y, points[pos].z);
  286. } else {
  287. (x, y, z) = _jAdd(points[pos], x, y, z);
  288. }
  289. }
  290. u1 <<= 2;
  291. u2 <<= 2;
  292. }
  293. }
  294. return _affineFromJacobian(x, y, z);
  295. }
  296. /**
  297. * @dev Precompute a matrice of useful jacobian points associated with a given P. This can be seen as a 4x4 matrix
  298. * that contains combination of P and G (generator) up to 3 times each. See the table below:
  299. *
  300. * ┌────┬─────────────────────┐
  301. * │ i │ 0 1 2 3 │
  302. * ├────┼─────────────────────┤
  303. * │ 0 │ 0 p 2p 3p │
  304. * │ 4 │ g g+p g+2p g+3p │
  305. * │ 8 │ 2g 2g+p 2g+2p 2g+3p │
  306. * │ 12 │ 3g 3g+p 3g+2p 3g+3p │
  307. * └────┴─────────────────────┘
  308. *
  309. * Note that `_jAdd` (and thus `_jAddPoint`) does not handle the case where one of the inputs is a point at
  310. * infinity (z = 0). However, we know that since `N ≡ 1 mod 2` and `N ≡ 1 mod 3`, there is no point P such that
  311. * 2P = 0 or 3P = 0. This guarantees that g, 2g, 3g, p, 2p, 3p are all non-zero, and that all `_jAddPoint` calls
  312. * have valid inputs.
  313. */
  314. function _preComputeJacobianPoints(uint256 px, uint256 py) private pure returns (JPoint[16] memory points) {
  315. points[0x00] = JPoint(0, 0, 0); // 0,0
  316. points[0x01] = JPoint(px, py, 1); // 1,0 (p)
  317. points[0x04] = JPoint(GX, GY, 1); // 0,1 (g)
  318. points[0x02] = _jDoublePoint(points[0x01]); // 2,0 (2p)
  319. points[0x08] = _jDoublePoint(points[0x04]); // 0,2 (2g)
  320. points[0x03] = _jAddPoint(points[0x01], points[0x02]); // 3,0 (p+2p = 3p)
  321. points[0x05] = _jAddPoint(points[0x01], points[0x04]); // 1,1 (p+g)
  322. points[0x06] = _jAddPoint(points[0x02], points[0x04]); // 2,1 (2p+g)
  323. points[0x07] = _jAddPoint(points[0x03], points[0x04]); // 3,1 (3p+g)
  324. points[0x09] = _jAddPoint(points[0x01], points[0x08]); // 1,2 (p+2g)
  325. points[0x0a] = _jAddPoint(points[0x02], points[0x08]); // 2,2 (2p+2g)
  326. points[0x0b] = _jAddPoint(points[0x03], points[0x08]); // 3,2 (3p+2g)
  327. points[0x0c] = _jAddPoint(points[0x04], points[0x08]); // 0,3 (g+2g = 3g)
  328. points[0x0d] = _jAddPoint(points[0x01], points[0x0c]); // 1,3 (p+3g)
  329. points[0x0e] = _jAddPoint(points[0x02], points[0x0c]); // 2,3 (2p+3g)
  330. points[0x0f] = _jAddPoint(points[0x03], points[0x0c]); // 3,3 (3p+3g)
  331. }
  332. function _jAddPoint(JPoint memory p1, JPoint memory p2) private pure returns (JPoint memory) {
  333. (uint256 x, uint256 y, uint256 z) = _jAdd(p1, p2.x, p2.y, p2.z);
  334. return JPoint(x, y, z);
  335. }
  336. function _jDoublePoint(JPoint memory p) private pure returns (JPoint memory) {
  337. (uint256 x, uint256 y, uint256 z) = _jDouble(p.x, p.y, p.z);
  338. return JPoint(x, y, z);
  339. }
  340. }