RSA.sol 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. // SPDX-License-Identifier: MIT
  2. pragma solidity ^0.8.20;
  3. import {Math} from "../math/Math.sol";
  4. /**
  5. * @dev RSA PKCS#1 v1.5 signature verification implementation according to https://datatracker.ietf.org/doc/html/rfc8017[RFC8017].
  6. *
  7. * This library supports PKCS#1 v1.5 padding to avoid malleability via chosen plaintext attacks in practical implementations.
  8. * The padding follows the EMSA-PKCS1-v1_5-ENCODE encoding definition as per section 9.2 of the RFC. This padding makes
  9. * RSA semantically secure for signing messages.
  10. *
  11. * Inspired by https://github.com/adria0/SolRsaVerify/blob/79c6182cabb9102ea69d4a2e996816091d5f1cd1[Adrià Massanet's work] (GNU General Public License v3.0).
  12. *
  13. * _Available since v5.1._
  14. */
  15. library RSA {
  16. /**
  17. * @dev Same as {pkcs1Sha256} but using SHA256 to calculate the digest of `data`.
  18. */
  19. function pkcs1Sha256(
  20. bytes memory data,
  21. bytes memory s,
  22. bytes memory e,
  23. bytes memory n
  24. ) internal view returns (bool) {
  25. return pkcs1Sha256(sha256(data), s, e, n);
  26. }
  27. /**
  28. * @dev Verifies a PKCSv1.5 signature given a digest according to the verification
  29. * method described in https://datatracker.ietf.org/doc/html/rfc8017#section-8.2.2[section 8.2.2 of RFC8017] with
  30. * support for explicit or implicit NULL parameters in the DigestInfo (no other optional parameters are supported).
  31. *
  32. * IMPORTANT: For security reason, this function requires the signature and modulus to have a length of at least
  33. * 2048 bits. If you use a smaller key, consider replacing it with a larger, more secure, one.
  34. *
  35. * WARNING: This verification algorithm doesn't prevent replayability. If called multiple times with the same
  36. * digest, public key and (valid signature), it will return true every time. Consider including an onchain nonce or
  37. * unique identifier in the message to prevent replay attacks.
  38. *
  39. * @param digest the digest to verify
  40. * @param s is a buffer containing the signature
  41. * @param e is the exponent of the public key
  42. * @param n is the modulus of the public key
  43. */
  44. function pkcs1Sha256(bytes32 digest, bytes memory s, bytes memory e, bytes memory n) internal view returns (bool) {
  45. unchecked {
  46. // cache and check length
  47. uint256 length = n.length;
  48. if (
  49. length < 0x100 || // Enforce 2048 bits minimum
  50. length != s.length // signature must have the same length as the finite field
  51. ) {
  52. return false;
  53. }
  54. // Verify that s < n to ensure there's only one valid signature for a given message
  55. for (uint256 i = 0; i < length; i += 0x20) {
  56. uint256 p = Math.min(i, length - 0x20);
  57. bytes32 sp = _unsafeReadBytes32(s, p);
  58. bytes32 np = _unsafeReadBytes32(n, p);
  59. if (sp < np) {
  60. // s < n in the upper bits (everything before is equal) → s < n globally: ok
  61. break;
  62. } else if (sp > np || p == length - 0x20) {
  63. // s > n in the upper bits (everything before is equal) → s > n globally: fail
  64. // or
  65. // s = n and we are looking at the lower bits → s = n globally: fail
  66. return false;
  67. }
  68. }
  69. // RSAVP1 https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.2
  70. // The previous check guarantees that n > 0. Therefore modExp cannot revert.
  71. bytes memory buffer = Math.modExp(s, e, n);
  72. // Check that buffer is well encoded:
  73. // buffer ::= 0x00 | 0x01 | PS | 0x00 | DigestInfo
  74. //
  75. // With
  76. // - PS is padding filled with 0xFF
  77. // - DigestInfo ::= SEQUENCE {
  78. // digestAlgorithm AlgorithmIdentifier,
  79. // [optional algorithm parameters] -- not currently supported
  80. // digest OCTET STRING
  81. // }
  82. // Get AlgorithmIdentifier from the DigestInfo, and set the config accordingly
  83. // - params: includes 00 + first part of DigestInfo
  84. // - mask: filter to check the params
  85. // - offset: length of the suffix (including digest)
  86. bytes32 params; // 0x00 | DigestInfo
  87. bytes32 mask;
  88. uint256 offset;
  89. // Digest is expected at the end of the buffer. Therefore if NULL param is present,
  90. // it should be at 32 (digest) + 2 bytes from the end. To those 34 bytes, we add the
  91. // OID (9 bytes) and its length (2 bytes) to get the position of the DigestInfo sequence,
  92. // which is expected to have a length of 0x31 when the NULL param is present or 0x2f if not.
  93. if (bytes1(_unsafeReadBytes32(buffer, length - 0x32)) == 0x31) {
  94. offset = 0x34;
  95. // 00 (1 byte) | SEQUENCE length (0x31) = 3031 (2 bytes) | SEQUENCE length (0x0d) = 300d (2 bytes) | OBJECT_IDENTIFIER length (0x09) = 0609 (2 bytes)
  96. // SHA256 OID = 608648016503040201 (9 bytes) | NULL = 0500 (2 bytes) (explicit) | OCTET_STRING length (0x20) = 0420 (2 bytes)
  97. params = 0x003031300d060960864801650304020105000420000000000000000000000000;
  98. mask = 0xffffffffffffffffffffffffffffffffffffffff000000000000000000000000; // (20 bytes)
  99. } else if (bytes1(_unsafeReadBytes32(buffer, length - 0x30)) == 0x2F) {
  100. offset = 0x32;
  101. // 00 (1 byte) | SEQUENCE length (0x2f) = 302f (2 bytes) | SEQUENCE length (0x0b) = 300b (2 bytes) | OBJECT_IDENTIFIER length (0x09) = 0609 (2 bytes)
  102. // SHA256 OID = 608648016503040201 (9 bytes) | NULL = <implicit> | OCTET_STRING length (0x20) = 0420 (2 bytes)
  103. params = 0x00302f300b060960864801650304020104200000000000000000000000000000;
  104. mask = 0xffffffffffffffffffffffffffffffffffff0000000000000000000000000000; // (18 bytes)
  105. } else {
  106. // unknown
  107. return false;
  108. }
  109. // Length is at least 0x100 and offset is at most 0x34, so this is safe. There is always some padding.
  110. uint256 paddingEnd = length - offset;
  111. // The padding has variable (arbitrary) length, so we check it byte per byte in a loop.
  112. // This is required to ensure non-malleability. Not checking would allow an attacker to
  113. // use the padding to manipulate the message in order to create a valid signature out of
  114. // multiple valid signatures.
  115. for (uint256 i = 2; i < paddingEnd; ++i) {
  116. if (bytes1(_unsafeReadBytes32(buffer, i)) != 0xFF) {
  117. return false;
  118. }
  119. }
  120. // All the other parameters are small enough to fit in a bytes32, so we can check them directly.
  121. return
  122. bytes2(0x0001) == bytes2(_unsafeReadBytes32(buffer, 0x00)) && // 00 | 01
  123. // PS was checked in the loop
  124. params == _unsafeReadBytes32(buffer, paddingEnd) & mask && // DigestInfo
  125. // Optional parameters are not checked
  126. digest == _unsafeReadBytes32(buffer, length - 0x20); // Digest
  127. }
  128. }
  129. /// @dev Reads a bytes32 from a bytes array without bounds checking.
  130. function _unsafeReadBytes32(bytes memory array, uint256 offset) private pure returns (bytes32 result) {
  131. // Memory safeness is guaranteed as long as the provided `array` is a Solidity-allocated bytes array
  132. // and `offset` is within bounds. This is the case for all calls to this private function from {pkcs1Sha256}.
  133. assembly ("memory-safe") {
  134. result := mload(add(add(array, 0x20), offset))
  135. }
  136. }
  137. }