123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- // SPDX-License-Identifier: MIT
- // OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/Heap.sol)
- pragma solidity ^0.8.20;
- import {Math} from "../math/Math.sol";
- import {SafeCast} from "../math/SafeCast.sol";
- import {Comparators} from "../Comparators.sol";
- import {Arrays} from "../Arrays.sol";
- import {Panic} from "../Panic.sol";
- import {StorageSlot} from "../StorageSlot.sol";
- /**
- * @dev Library for managing https://en.wikipedia.org/wiki/Binary_heap[binary heap] that can be used as
- * https://en.wikipedia.org/wiki/Priority_queue[priority queue].
- *
- * Heaps are represented as a tree of values where the first element (index 0) is the root, and where the node at
- * index i is the child of the node at index (i-1)/2 and the parent of nodes at index 2*i+1 and 2*i+2. Each node
- * stores an element of the heap.
- *
- * The structure is ordered so that each node is bigger than its parent. An immediate consequence is that the
- * highest priority value is the one at the root. This value can be looked up in constant time (O(1)) at
- * `heap.tree[0]`
- *
- * The structure is designed to perform the following operations with the corresponding complexities:
- *
- * * peek (get the highest priority value): O(1)
- * * insert (insert a value): O(log(n))
- * * pop (remove the highest priority value): O(log(n))
- * * replace (replace the highest priority value with a new value): O(log(n))
- * * length (get the number of elements): O(1)
- * * clear (remove all elements): O(1)
- *
- * IMPORTANT: This library allows for the use of custom comparator functions. Given that manipulating
- * memory can lead to unexpected behavior. Consider verifying that the comparator does not manipulate
- * the Heap's state directly and that it follows the Solidity memory safety rules.
- *
- * _Available since v5.1._
- */
- library Heap {
- using Arrays for *;
- using Math for *;
- using SafeCast for *;
- /**
- * @dev Binary heap that supports values of type uint256.
- *
- * Each element of that structure uses one storage slot.
- */
- struct Uint256Heap {
- uint256[] tree;
- }
- /**
- * @dev Lookup the root element of the heap.
- */
- function peek(Uint256Heap storage self) internal view returns (uint256) {
- // self.tree[0] will `ARRAY_ACCESS_OUT_OF_BOUNDS` panic if heap is empty.
- return self.tree[0];
- }
- /**
- * @dev Remove (and return) the root element for the heap using the default comparator.
- *
- * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
- * during the lifecycle of a heap will result in undefined behavior.
- */
- function pop(Uint256Heap storage self) internal returns (uint256) {
- return pop(self, Comparators.lt);
- }
- /**
- * @dev Remove (and return) the root element for the heap using the provided comparator.
- *
- * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
- * during the lifecycle of a heap will result in undefined behavior.
- */
- function pop(
- Uint256Heap storage self,
- function(uint256, uint256) view returns (bool) comp
- ) internal returns (uint256) {
- unchecked {
- uint256 size = length(self);
- if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
- // cache
- uint256 rootValue = self.tree.unsafeAccess(0).value;
- uint256 lastValue = self.tree.unsafeAccess(size - 1).value;
- // swap last leaf with root, shrink tree and re-heapify
- self.tree.pop();
- self.tree.unsafeAccess(0).value = lastValue;
- _siftDown(self, size - 1, 0, lastValue, comp);
- return rootValue;
- }
- }
- /**
- * @dev Insert a new element in the heap using the default comparator.
- *
- * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
- * during the lifecycle of a heap will result in undefined behavior.
- */
- function insert(Uint256Heap storage self, uint256 value) internal {
- insert(self, value, Comparators.lt);
- }
- /**
- * @dev Insert a new element in the heap using the provided comparator.
- *
- * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
- * during the lifecycle of a heap will result in undefined behavior.
- */
- function insert(
- Uint256Heap storage self,
- uint256 value,
- function(uint256, uint256) view returns (bool) comp
- ) internal {
- uint256 size = length(self);
- // push new item and re-heapify
- self.tree.push(value);
- _siftUp(self, size, value, comp);
- }
- /**
- * @dev Return the root element for the heap, and replace it with a new value, using the default comparator.
- * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
- *
- * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
- * during the lifecycle of a heap will result in undefined behavior.
- */
- function replace(Uint256Heap storage self, uint256 newValue) internal returns (uint256) {
- return replace(self, newValue, Comparators.lt);
- }
- /**
- * @dev Return the root element for the heap, and replace it with a new value, using the provided comparator.
- * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
- *
- * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
- * during the lifecycle of a heap will result in undefined behavior.
- */
- function replace(
- Uint256Heap storage self,
- uint256 newValue,
- function(uint256, uint256) view returns (bool) comp
- ) internal returns (uint256) {
- uint256 size = length(self);
- if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
- // cache
- uint256 oldValue = self.tree.unsafeAccess(0).value;
- // replace and re-heapify
- self.tree.unsafeAccess(0).value = newValue;
- _siftDown(self, size, 0, newValue, comp);
- return oldValue;
- }
- /**
- * @dev Returns the number of elements in the heap.
- */
- function length(Uint256Heap storage self) internal view returns (uint256) {
- return self.tree.length;
- }
- /**
- * @dev Removes all elements in the heap.
- */
- function clear(Uint256Heap storage self) internal {
- self.tree.unsafeSetLength(0);
- }
- /**
- * @dev Swap node `i` and `j` in the tree.
- */
- function _swap(Uint256Heap storage self, uint256 i, uint256 j) private {
- StorageSlot.Uint256Slot storage ni = self.tree.unsafeAccess(i);
- StorageSlot.Uint256Slot storage nj = self.tree.unsafeAccess(j);
- (ni.value, nj.value) = (nj.value, ni.value);
- }
- /**
- * @dev Perform heap maintenance on `self`, starting at `index` (with the `value`), using `comp` as a
- * comparator, and moving toward the leaves of the underlying tree.
- *
- * NOTE: This is a private function that is called in a trusted context with already cached parameters. `size`
- * and `value` could be extracted from `self` and `index`, but that would require redundant storage read. These
- * parameters are not verified. It is the caller role to make sure the parameters are correct.
- */
- function _siftDown(
- Uint256Heap storage self,
- uint256 size,
- uint256 index,
- uint256 value,
- function(uint256, uint256) view returns (bool) comp
- ) private {
- unchecked {
- // Check if there is a risk of overflow when computing the indices of the child nodes. If that is the case,
- // there cannot be child nodes in the tree, so sifting is done.
- if (index >= type(uint256).max / 2) return;
- // Compute the indices of the potential child nodes
- uint256 lIndex = 2 * index + 1;
- uint256 rIndex = 2 * index + 2;
- // Three cases:
- // 1. Both children exist: sifting may continue on one of the branch (selection required)
- // 2. Only left child exist: sifting may continue on the left branch (no selection required)
- // 3. Neither child exist: sifting is done
- if (rIndex < size) {
- uint256 lValue = self.tree.unsafeAccess(lIndex).value;
- uint256 rValue = self.tree.unsafeAccess(rIndex).value;
- if (comp(lValue, value) || comp(rValue, value)) {
- uint256 cIndex = comp(lValue, rValue).ternary(lIndex, rIndex);
- _swap(self, index, cIndex);
- _siftDown(self, size, cIndex, value, comp);
- }
- } else if (lIndex < size) {
- uint256 lValue = self.tree.unsafeAccess(lIndex).value;
- if (comp(lValue, value)) {
- _swap(self, index, lIndex);
- _siftDown(self, size, lIndex, value, comp);
- }
- }
- }
- }
- /**
- * @dev Perform heap maintenance on `self`, starting at `index` (with the `value`), using `comp` as a
- * comparator, and moving toward the root of the underlying tree.
- *
- * NOTE: This is a private function that is called in a trusted context with already cached parameters. `value`
- * could be extracted from `self` and `index`, but that would require redundant storage read. These parameters are not
- * verified. It is the caller role to make sure the parameters are correct.
- */
- function _siftUp(
- Uint256Heap storage self,
- uint256 index,
- uint256 value,
- function(uint256, uint256) view returns (bool) comp
- ) private {
- unchecked {
- while (index > 0) {
- uint256 parentIndex = (index - 1) / 2;
- uint256 parentValue = self.tree.unsafeAccess(parentIndex).value;
- if (comp(parentValue, value)) break;
- _swap(self, index, parentIndex);
- index = parentIndex;
- }
- }
- }
- }
|