123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749 |
- // SPDX-License-Identifier: MIT
- // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
- pragma solidity ^0.8.20;
- import {Panic} from "../Panic.sol";
- import {SafeCast} from "./SafeCast.sol";
- /**
- * @dev Standard math utilities missing in the Solidity language.
- */
- library Math {
- enum Rounding {
- Floor, // Toward negative infinity
- Ceil, // Toward positive infinity
- Trunc, // Toward zero
- Expand // Away from zero
- }
- /**
- * @dev Return the 512-bit addition of two uint256.
- *
- * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
- */
- function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
- assembly ("memory-safe") {
- low := add(a, b)
- high := lt(low, a)
- }
- }
- /**
- * @dev Return the 512-bit multiplication of two uint256.
- *
- * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
- */
- function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
- // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
- // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
- // variables such that product = high * 2²⁵⁶ + low.
- assembly ("memory-safe") {
- let mm := mulmod(a, b, not(0))
- low := mul(a, b)
- high := sub(sub(mm, low), lt(mm, low))
- }
- }
- /**
- * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
- */
- function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
- unchecked {
- uint256 c = a + b;
- success = c >= a;
- result = c * SafeCast.toUint(success);
- }
- }
- /**
- * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
- */
- function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
- unchecked {
- uint256 c = a - b;
- success = c <= a;
- result = c * SafeCast.toUint(success);
- }
- }
- /**
- * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
- */
- function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
- unchecked {
- uint256 c = a * b;
- assembly ("memory-safe") {
- // Only true when the multiplication doesn't overflow
- // (c / a == b) || (a == 0)
- success := or(eq(div(c, a), b), iszero(a))
- }
- // equivalent to: success ? c : 0
- result = c * SafeCast.toUint(success);
- }
- }
- /**
- * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
- */
- function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
- unchecked {
- success = b > 0;
- assembly ("memory-safe") {
- // The `DIV` opcode returns zero when the denominator is 0.
- result := div(a, b)
- }
- }
- }
- /**
- * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
- */
- function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
- unchecked {
- success = b > 0;
- assembly ("memory-safe") {
- // The `MOD` opcode returns zero when the denominator is 0.
- result := mod(a, b)
- }
- }
- }
- /**
- * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
- */
- function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
- (bool success, uint256 result) = tryAdd(a, b);
- return ternary(success, result, type(uint256).max);
- }
- /**
- * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
- */
- function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
- (, uint256 result) = trySub(a, b);
- return result;
- }
- /**
- * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
- */
- function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
- (bool success, uint256 result) = tryMul(a, b);
- return ternary(success, result, type(uint256).max);
- }
- /**
- * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
- *
- * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
- * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
- * one branch when needed, making this function more expensive.
- */
- function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
- unchecked {
- // branchless ternary works because:
- // b ^ (a ^ b) == a
- // b ^ 0 == b
- return b ^ ((a ^ b) * SafeCast.toUint(condition));
- }
- }
- /**
- * @dev Returns the largest of two numbers.
- */
- function max(uint256 a, uint256 b) internal pure returns (uint256) {
- return ternary(a > b, a, b);
- }
- /**
- * @dev Returns the smallest of two numbers.
- */
- function min(uint256 a, uint256 b) internal pure returns (uint256) {
- return ternary(a < b, a, b);
- }
- /**
- * @dev Returns the average of two numbers. The result is rounded towards
- * zero.
- */
- function average(uint256 a, uint256 b) internal pure returns (uint256) {
- // (a + b) / 2 can overflow.
- return (a & b) + (a ^ b) / 2;
- }
- /**
- * @dev Returns the ceiling of the division of two numbers.
- *
- * This differs from standard division with `/` in that it rounds towards infinity instead
- * of rounding towards zero.
- */
- function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
- if (b == 0) {
- // Guarantee the same behavior as in a regular Solidity division.
- Panic.panic(Panic.DIVISION_BY_ZERO);
- }
- // The following calculation ensures accurate ceiling division without overflow.
- // Since a is non-zero, (a - 1) / b will not overflow.
- // The largest possible result occurs when (a - 1) / b is type(uint256).max,
- // but the largest value we can obtain is type(uint256).max - 1, which happens
- // when a = type(uint256).max and b = 1.
- unchecked {
- return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
- }
- }
- /**
- * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
- * denominator == 0.
- *
- * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
- * Uniswap Labs also under MIT license.
- */
- function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
- unchecked {
- (uint256 high, uint256 low) = mul512(x, y);
- // Handle non-overflow cases, 256 by 256 division.
- if (high == 0) {
- // Solidity will revert if denominator == 0, unlike the div opcode on its own.
- // The surrounding unchecked block does not change this fact.
- // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
- return low / denominator;
- }
- // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
- if (denominator <= high) {
- Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
- }
- ///////////////////////////////////////////////
- // 512 by 256 division.
- ///////////////////////////////////////////////
- // Make division exact by subtracting the remainder from [high low].
- uint256 remainder;
- assembly ("memory-safe") {
- // Compute remainder using mulmod.
- remainder := mulmod(x, y, denominator)
- // Subtract 256 bit number from 512 bit number.
- high := sub(high, gt(remainder, low))
- low := sub(low, remainder)
- }
- // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
- // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
- uint256 twos = denominator & (0 - denominator);
- assembly ("memory-safe") {
- // Divide denominator by twos.
- denominator := div(denominator, twos)
- // Divide [high low] by twos.
- low := div(low, twos)
- // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
- twos := add(div(sub(0, twos), twos), 1)
- }
- // Shift in bits from high into low.
- low |= high * twos;
- // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
- // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
- // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
- uint256 inverse = (3 * denominator) ^ 2;
- // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
- // works in modular arithmetic, doubling the correct bits in each step.
- inverse *= 2 - denominator * inverse; // inverse mod 2⁸
- inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
- inverse *= 2 - denominator * inverse; // inverse mod 2³²
- inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
- inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
- inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
- // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
- // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
- // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
- // is no longer required.
- result = low * inverse;
- return result;
- }
- }
- /**
- * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
- */
- function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
- return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
- }
- /**
- * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
- */
- function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
- unchecked {
- (uint256 high, uint256 low) = mul512(x, y);
- if (high >= 1 << n) {
- Panic.panic(Panic.UNDER_OVERFLOW);
- }
- return (high << (256 - n)) | (low >> n);
- }
- }
- /**
- * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
- */
- function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
- return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
- }
- /**
- * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
- *
- * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
- * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
- *
- * If the input value is not inversible, 0 is returned.
- *
- * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
- * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
- */
- function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
- unchecked {
- if (n == 0) return 0;
- // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
- // Used to compute integers x and y such that: ax + ny = gcd(a, n).
- // When the gcd is 1, then the inverse of a modulo n exists and it's x.
- // ax + ny = 1
- // ax = 1 + (-y)n
- // ax ≡ 1 (mod n) # x is the inverse of a modulo n
- // If the remainder is 0 the gcd is n right away.
- uint256 remainder = a % n;
- uint256 gcd = n;
- // Therefore the initial coefficients are:
- // ax + ny = gcd(a, n) = n
- // 0a + 1n = n
- int256 x = 0;
- int256 y = 1;
- while (remainder != 0) {
- uint256 quotient = gcd / remainder;
- (gcd, remainder) = (
- // The old remainder is the next gcd to try.
- remainder,
- // Compute the next remainder.
- // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
- // where gcd is at most n (capped to type(uint256).max)
- gcd - remainder * quotient
- );
- (x, y) = (
- // Increment the coefficient of a.
- y,
- // Decrement the coefficient of n.
- // Can overflow, but the result is casted to uint256 so that the
- // next value of y is "wrapped around" to a value between 0 and n - 1.
- x - y * int256(quotient)
- );
- }
- if (gcd != 1) return 0; // No inverse exists.
- return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
- }
- }
- /**
- * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
- *
- * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
- * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
- * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
- *
- * NOTE: this function does NOT check that `p` is a prime greater than `2`.
- */
- function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
- unchecked {
- return Math.modExp(a, p - 2, p);
- }
- }
- /**
- * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
- *
- * Requirements:
- * - modulus can't be zero
- * - underlying staticcall to precompile must succeed
- *
- * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
- * sure the chain you're using it on supports the precompiled contract for modular exponentiation
- * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
- * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
- * interpreted as 0.
- */
- function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
- (bool success, uint256 result) = tryModExp(b, e, m);
- if (!success) {
- Panic.panic(Panic.DIVISION_BY_ZERO);
- }
- return result;
- }
- /**
- * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
- * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
- * to operate modulo 0 or if the underlying precompile reverted.
- *
- * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
- * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
- * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
- * of a revert, but the result may be incorrectly interpreted as 0.
- */
- function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
- if (m == 0) return (false, 0);
- assembly ("memory-safe") {
- let ptr := mload(0x40)
- // | Offset | Content | Content (Hex) |
- // |-----------|------------|--------------------------------------------------------------------|
- // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
- // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
- // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
- // | 0x60:0x7f | value of b | 0x<.............................................................b> |
- // | 0x80:0x9f | value of e | 0x<.............................................................e> |
- // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
- mstore(ptr, 0x20)
- mstore(add(ptr, 0x20), 0x20)
- mstore(add(ptr, 0x40), 0x20)
- mstore(add(ptr, 0x60), b)
- mstore(add(ptr, 0x80), e)
- mstore(add(ptr, 0xa0), m)
- // Given the result < m, it's guaranteed to fit in 32 bytes,
- // so we can use the memory scratch space located at offset 0.
- success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
- result := mload(0x00)
- }
- }
- /**
- * @dev Variant of {modExp} that supports inputs of arbitrary length.
- */
- function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
- (bool success, bytes memory result) = tryModExp(b, e, m);
- if (!success) {
- Panic.panic(Panic.DIVISION_BY_ZERO);
- }
- return result;
- }
- /**
- * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
- */
- function tryModExp(
- bytes memory b,
- bytes memory e,
- bytes memory m
- ) internal view returns (bool success, bytes memory result) {
- if (_zeroBytes(m)) return (false, new bytes(0));
- uint256 mLen = m.length;
- // Encode call args in result and move the free memory pointer
- result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
- assembly ("memory-safe") {
- let dataPtr := add(result, 0x20)
- // Write result on top of args to avoid allocating extra memory.
- success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
- // Overwrite the length.
- // result.length > returndatasize() is guaranteed because returndatasize() == m.length
- mstore(result, mLen)
- // Set the memory pointer after the returned data.
- mstore(0x40, add(dataPtr, mLen))
- }
- }
- /**
- * @dev Returns whether the provided byte array is zero.
- */
- function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
- for (uint256 i = 0; i < byteArray.length; ++i) {
- if (byteArray[i] != 0) {
- return false;
- }
- }
- return true;
- }
- /**
- * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
- * towards zero.
- *
- * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
- * using integer operations.
- */
- function sqrt(uint256 a) internal pure returns (uint256) {
- unchecked {
- // Take care of easy edge cases when a == 0 or a == 1
- if (a <= 1) {
- return a;
- }
- // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
- // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
- // the current value as `ε_n = | x_n - sqrt(a) |`.
- //
- // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
- // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
- // bigger than any uint256.
- //
- // By noticing that
- // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
- // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
- // to the msb function.
- uint256 aa = a;
- uint256 xn = 1;
- if (aa >= (1 << 128)) {
- aa >>= 128;
- xn <<= 64;
- }
- if (aa >= (1 << 64)) {
- aa >>= 64;
- xn <<= 32;
- }
- if (aa >= (1 << 32)) {
- aa >>= 32;
- xn <<= 16;
- }
- if (aa >= (1 << 16)) {
- aa >>= 16;
- xn <<= 8;
- }
- if (aa >= (1 << 8)) {
- aa >>= 8;
- xn <<= 4;
- }
- if (aa >= (1 << 4)) {
- aa >>= 4;
- xn <<= 2;
- }
- if (aa >= (1 << 2)) {
- xn <<= 1;
- }
- // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
- //
- // We can refine our estimation by noticing that the middle of that interval minimizes the error.
- // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
- // This is going to be our x_0 (and ε_0)
- xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
- // From here, Newton's method give us:
- // x_{n+1} = (x_n + a / x_n) / 2
- //
- // One should note that:
- // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
- // = ((x_n² + a) / (2 * x_n))² - a
- // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
- // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
- // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
- // = (x_n² - a)² / (2 * x_n)²
- // = ((x_n² - a) / (2 * x_n))²
- // ≥ 0
- // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
- //
- // This gives us the proof of quadratic convergence of the sequence:
- // ε_{n+1} = | x_{n+1} - sqrt(a) |
- // = | (x_n + a / x_n) / 2 - sqrt(a) |
- // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
- // = | (x_n - sqrt(a))² / (2 * x_n) |
- // = | ε_n² / (2 * x_n) |
- // = ε_n² / | (2 * x_n) |
- //
- // For the first iteration, we have a special case where x_0 is known:
- // ε_1 = ε_0² / | (2 * x_0) |
- // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
- // ≤ 2**(2*e-4) / (3 * 2**(e-1))
- // ≤ 2**(e-3) / 3
- // ≤ 2**(e-3-log2(3))
- // ≤ 2**(e-4.5)
- //
- // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
- // ε_{n+1} = ε_n² / | (2 * x_n) |
- // ≤ (2**(e-k))² / (2 * 2**(e-1))
- // ≤ 2**(2*e-2*k) / 2**e
- // ≤ 2**(e-2*k)
- xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
- xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
- xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
- xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
- xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
- xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
- // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
- // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
- // sqrt(a) or sqrt(a) + 1.
- return xn - SafeCast.toUint(xn > a / xn);
- }
- }
- /**
- * @dev Calculates sqrt(a), following the selected rounding direction.
- */
- function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
- unchecked {
- uint256 result = sqrt(a);
- return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
- }
- }
- /**
- * @dev Return the log in base 2 of a positive value rounded towards zero.
- * Returns 0 if given 0.
- */
- function log2(uint256 x) internal pure returns (uint256 r) {
- // If value has upper 128 bits set, log2 result is at least 128
- r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
- // If upper 64 bits of 128-bit half set, add 64 to result
- r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
- // If upper 32 bits of 64-bit half set, add 32 to result
- r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
- // If upper 16 bits of 32-bit half set, add 16 to result
- r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
- // If upper 8 bits of 16-bit half set, add 8 to result
- r |= SafeCast.toUint((x >> r) > 0xff) << 3;
- // If upper 4 bits of 8-bit half set, add 4 to result
- r |= SafeCast.toUint((x >> r) > 0xf) << 2;
- // Shifts value right by the current result and use it as an index into this lookup table:
- //
- // | x (4 bits) | index | table[index] = MSB position |
- // |------------|---------|-----------------------------|
- // | 0000 | 0 | table[0] = 0 |
- // | 0001 | 1 | table[1] = 0 |
- // | 0010 | 2 | table[2] = 1 |
- // | 0011 | 3 | table[3] = 1 |
- // | 0100 | 4 | table[4] = 2 |
- // | 0101 | 5 | table[5] = 2 |
- // | 0110 | 6 | table[6] = 2 |
- // | 0111 | 7 | table[7] = 2 |
- // | 1000 | 8 | table[8] = 3 |
- // | 1001 | 9 | table[9] = 3 |
- // | 1010 | 10 | table[10] = 3 |
- // | 1011 | 11 | table[11] = 3 |
- // | 1100 | 12 | table[12] = 3 |
- // | 1101 | 13 | table[13] = 3 |
- // | 1110 | 14 | table[14] = 3 |
- // | 1111 | 15 | table[15] = 3 |
- //
- // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
- assembly ("memory-safe") {
- r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
- }
- }
- /**
- * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
- * Returns 0 if given 0.
- */
- function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
- unchecked {
- uint256 result = log2(value);
- return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
- }
- }
- /**
- * @dev Return the log in base 10 of a positive value rounded towards zero.
- * Returns 0 if given 0.
- */
- function log10(uint256 value) internal pure returns (uint256) {
- uint256 result = 0;
- unchecked {
- if (value >= 10 ** 64) {
- value /= 10 ** 64;
- result += 64;
- }
- if (value >= 10 ** 32) {
- value /= 10 ** 32;
- result += 32;
- }
- if (value >= 10 ** 16) {
- value /= 10 ** 16;
- result += 16;
- }
- if (value >= 10 ** 8) {
- value /= 10 ** 8;
- result += 8;
- }
- if (value >= 10 ** 4) {
- value /= 10 ** 4;
- result += 4;
- }
- if (value >= 10 ** 2) {
- value /= 10 ** 2;
- result += 2;
- }
- if (value >= 10 ** 1) {
- result += 1;
- }
- }
- return result;
- }
- /**
- * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
- * Returns 0 if given 0.
- */
- function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
- unchecked {
- uint256 result = log10(value);
- return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
- }
- }
- /**
- * @dev Return the log in base 256 of a positive value rounded towards zero.
- * Returns 0 if given 0.
- *
- * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
- */
- function log256(uint256 x) internal pure returns (uint256 r) {
- // If value has upper 128 bits set, log2 result is at least 128
- r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
- // If upper 64 bits of 128-bit half set, add 64 to result
- r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
- // If upper 32 bits of 64-bit half set, add 32 to result
- r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
- // If upper 16 bits of 32-bit half set, add 16 to result
- r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
- // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
- return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
- }
- /**
- * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
- * Returns 0 if given 0.
- */
- function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
- unchecked {
- uint256 result = log256(value);
- return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
- }
- }
- /**
- * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
- */
- function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
- return uint8(rounding) % 2 == 1;
- }
- }
|