ECDSA.sol 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081
  1. pragma solidity ^0.6.0;
  2. /**
  3. * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
  4. *
  5. * These functions can be used to verify that a message was signed by the holder
  6. * of the private keys of a given address.
  7. */
  8. library ECDSA {
  9. /**
  10. * @dev Returns the address that signed a hashed message (`hash`) with
  11. * `signature`. This address can then be used for verification purposes.
  12. *
  13. * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
  14. * this function rejects them by requiring the `s` value to be in the lower
  15. * half order, and the `v` value to be either 27 or 28.
  16. *
  17. * IMPORTANT: `hash` _must_ be the result of a hash operation for the
  18. * verification to be secure: it is possible to craft signatures that
  19. * recover to arbitrary addresses for non-hashed data. A safe way to ensure
  20. * this is by receiving a hash of the original message (which may otherwise
  21. * be too long), and then calling {toEthSignedMessageHash} on it.
  22. */
  23. function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
  24. // Check the signature length
  25. if (signature.length != 65) {
  26. revert("ECDSA: invalid signature length");
  27. }
  28. // Divide the signature in r, s and v variables
  29. bytes32 r;
  30. bytes32 s;
  31. uint8 v;
  32. // ecrecover takes the signature parameters, and the only way to get them
  33. // currently is to use assembly.
  34. // solhint-disable-next-line no-inline-assembly
  35. assembly {
  36. r := mload(add(signature, 0x20))
  37. s := mload(add(signature, 0x40))
  38. v := byte(0, mload(add(signature, 0x60)))
  39. }
  40. // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
  41. // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
  42. // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
  43. // signatures from current libraries generate a unique signature with an s-value in the lower half order.
  44. //
  45. // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
  46. // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
  47. // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
  48. // these malleable signatures as well.
  49. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
  50. revert("ECDSA: invalid signature 's' value");
  51. }
  52. if (v != 27 && v != 28) {
  53. revert("ECDSA: invalid signature 'v' value");
  54. }
  55. // If the signature is valid (and not malleable), return the signer address
  56. address signer = ecrecover(hash, v, r, s);
  57. require(signer != address(0), "ECDSA: invalid signature");
  58. return signer;
  59. }
  60. /**
  61. * @dev Returns an Ethereum Signed Message, created from a `hash`. This
  62. * replicates the behavior of the
  63. * https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`]
  64. * JSON-RPC method.
  65. *
  66. * See {recover}.
  67. */
  68. function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
  69. // 32 is the length in bytes of hash,
  70. // enforced by the type signature above
  71. return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
  72. }
  73. }