Math.sol 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. // SPDX-License-Identifier: MIT
  2. // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
  3. pragma solidity ^0.8.19;
  4. /**
  5. * @dev Standard math utilities missing in the Solidity language.
  6. */
  7. library Math {
  8. /**
  9. * @dev Muldiv operation overflow.
  10. */
  11. error MathOverflowedMulDiv();
  12. enum Rounding {
  13. Down, // Toward negative infinity
  14. Up, // Toward infinity
  15. Zero // Toward zero
  16. }
  17. /**
  18. * @dev Returns the addition of two unsigned integers, with an overflow flag.
  19. *
  20. * _Available since v5.0._
  21. */
  22. function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  23. unchecked {
  24. uint256 c = a + b;
  25. if (c < a) return (false, 0);
  26. return (true, c);
  27. }
  28. }
  29. /**
  30. * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
  31. *
  32. * _Available since v5.0._
  33. */
  34. function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  35. unchecked {
  36. if (b > a) return (false, 0);
  37. return (true, a - b);
  38. }
  39. }
  40. /**
  41. * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
  42. *
  43. * _Available since v5.0._
  44. */
  45. function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  46. unchecked {
  47. // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
  48. // benefit is lost if 'b' is also tested.
  49. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
  50. if (a == 0) return (true, 0);
  51. uint256 c = a * b;
  52. if (c / a != b) return (false, 0);
  53. return (true, c);
  54. }
  55. }
  56. /**
  57. * @dev Returns the division of two unsigned integers, with a division by zero flag.
  58. *
  59. * _Available since v5.0._
  60. */
  61. function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  62. unchecked {
  63. if (b == 0) return (false, 0);
  64. return (true, a / b);
  65. }
  66. }
  67. /**
  68. * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
  69. *
  70. * _Available since v5.0._
  71. */
  72. function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
  73. unchecked {
  74. if (b == 0) return (false, 0);
  75. return (true, a % b);
  76. }
  77. }
  78. /**
  79. * @dev Returns the largest of two numbers.
  80. */
  81. function max(uint256 a, uint256 b) internal pure returns (uint256) {
  82. return a > b ? a : b;
  83. }
  84. /**
  85. * @dev Returns the smallest of two numbers.
  86. */
  87. function min(uint256 a, uint256 b) internal pure returns (uint256) {
  88. return a < b ? a : b;
  89. }
  90. /**
  91. * @dev Returns the average of two numbers. The result is rounded towards
  92. * zero.
  93. */
  94. function average(uint256 a, uint256 b) internal pure returns (uint256) {
  95. // (a + b) / 2 can overflow.
  96. return (a & b) + (a ^ b) / 2;
  97. }
  98. /**
  99. * @dev Returns the ceiling of the division of two numbers.
  100. *
  101. * This differs from standard division with `/` in that it rounds up instead
  102. * of rounding down.
  103. */
  104. function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
  105. // (a + b - 1) / b can overflow on addition, so we distribute.
  106. return a == 0 ? 0 : (a - 1) / b + 1;
  107. }
  108. /**
  109. * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
  110. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
  111. * with further edits by Uniswap Labs also under MIT license.
  112. */
  113. function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
  114. unchecked {
  115. // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
  116. // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
  117. // variables such that product = prod1 * 2^256 + prod0.
  118. uint256 prod0; // Least significant 256 bits of the product
  119. uint256 prod1; // Most significant 256 bits of the product
  120. assembly {
  121. let mm := mulmod(x, y, not(0))
  122. prod0 := mul(x, y)
  123. prod1 := sub(sub(mm, prod0), lt(mm, prod0))
  124. }
  125. // Handle non-overflow cases, 256 by 256 division.
  126. if (prod1 == 0) {
  127. // Solidity will revert if denominator == 0, unlike the div opcode on its own.
  128. // The surrounding unchecked block does not change this fact.
  129. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
  130. return prod0 / denominator;
  131. }
  132. // Make sure the result is less than 2^256. Also prevents denominator == 0.
  133. if (denominator <= prod1) {
  134. revert MathOverflowedMulDiv();
  135. }
  136. ///////////////////////////////////////////////
  137. // 512 by 256 division.
  138. ///////////////////////////////////////////////
  139. // Make division exact by subtracting the remainder from [prod1 prod0].
  140. uint256 remainder;
  141. assembly {
  142. // Compute remainder using mulmod.
  143. remainder := mulmod(x, y, denominator)
  144. // Subtract 256 bit number from 512 bit number.
  145. prod1 := sub(prod1, gt(remainder, prod0))
  146. prod0 := sub(prod0, remainder)
  147. }
  148. // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
  149. // See https://cs.stackexchange.com/q/138556/92363.
  150. // Does not overflow because the denominator cannot be zero at this stage in the function.
  151. uint256 twos = denominator & (~denominator + 1);
  152. assembly {
  153. // Divide denominator by twos.
  154. denominator := div(denominator, twos)
  155. // Divide [prod1 prod0] by twos.
  156. prod0 := div(prod0, twos)
  157. // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
  158. twos := add(div(sub(0, twos), twos), 1)
  159. }
  160. // Shift in bits from prod1 into prod0.
  161. prod0 |= prod1 * twos;
  162. // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
  163. // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
  164. // four bits. That is, denominator * inv = 1 mod 2^4.
  165. uint256 inverse = (3 * denominator) ^ 2;
  166. // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
  167. // in modular arithmetic, doubling the correct bits in each step.
  168. inverse *= 2 - denominator * inverse; // inverse mod 2^8
  169. inverse *= 2 - denominator * inverse; // inverse mod 2^16
  170. inverse *= 2 - denominator * inverse; // inverse mod 2^32
  171. inverse *= 2 - denominator * inverse; // inverse mod 2^64
  172. inverse *= 2 - denominator * inverse; // inverse mod 2^128
  173. inverse *= 2 - denominator * inverse; // inverse mod 2^256
  174. // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
  175. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
  176. // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
  177. // is no longer required.
  178. result = prod0 * inverse;
  179. return result;
  180. }
  181. }
  182. /**
  183. * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
  184. */
  185. function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
  186. uint256 result = mulDiv(x, y, denominator);
  187. if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
  188. result += 1;
  189. }
  190. return result;
  191. }
  192. /**
  193. * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
  194. *
  195. * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
  196. */
  197. function sqrt(uint256 a) internal pure returns (uint256) {
  198. if (a == 0) {
  199. return 0;
  200. }
  201. // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
  202. //
  203. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
  204. // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
  205. //
  206. // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
  207. // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
  208. // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
  209. //
  210. // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
  211. uint256 result = 1 << (log2(a) >> 1);
  212. // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
  213. // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
  214. // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
  215. // into the expected uint128 result.
  216. unchecked {
  217. result = (result + a / result) >> 1;
  218. result = (result + a / result) >> 1;
  219. result = (result + a / result) >> 1;
  220. result = (result + a / result) >> 1;
  221. result = (result + a / result) >> 1;
  222. result = (result + a / result) >> 1;
  223. result = (result + a / result) >> 1;
  224. return min(result, a / result);
  225. }
  226. }
  227. /**
  228. * @notice Calculates sqrt(a), following the selected rounding direction.
  229. */
  230. function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
  231. unchecked {
  232. uint256 result = sqrt(a);
  233. return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
  234. }
  235. }
  236. /**
  237. * @dev Return the log in base 2, rounded down, of a positive value.
  238. * Returns 0 if given 0.
  239. */
  240. function log2(uint256 value) internal pure returns (uint256) {
  241. uint256 result = 0;
  242. unchecked {
  243. if (value >> 128 > 0) {
  244. value >>= 128;
  245. result += 128;
  246. }
  247. if (value >> 64 > 0) {
  248. value >>= 64;
  249. result += 64;
  250. }
  251. if (value >> 32 > 0) {
  252. value >>= 32;
  253. result += 32;
  254. }
  255. if (value >> 16 > 0) {
  256. value >>= 16;
  257. result += 16;
  258. }
  259. if (value >> 8 > 0) {
  260. value >>= 8;
  261. result += 8;
  262. }
  263. if (value >> 4 > 0) {
  264. value >>= 4;
  265. result += 4;
  266. }
  267. if (value >> 2 > 0) {
  268. value >>= 2;
  269. result += 2;
  270. }
  271. if (value >> 1 > 0) {
  272. result += 1;
  273. }
  274. }
  275. return result;
  276. }
  277. /**
  278. * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
  279. * Returns 0 if given 0.
  280. */
  281. function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
  282. unchecked {
  283. uint256 result = log2(value);
  284. return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
  285. }
  286. }
  287. /**
  288. * @dev Return the log in base 10, rounded down, of a positive value.
  289. * Returns 0 if given 0.
  290. */
  291. function log10(uint256 value) internal pure returns (uint256) {
  292. uint256 result = 0;
  293. unchecked {
  294. if (value >= 10 ** 64) {
  295. value /= 10 ** 64;
  296. result += 64;
  297. }
  298. if (value >= 10 ** 32) {
  299. value /= 10 ** 32;
  300. result += 32;
  301. }
  302. if (value >= 10 ** 16) {
  303. value /= 10 ** 16;
  304. result += 16;
  305. }
  306. if (value >= 10 ** 8) {
  307. value /= 10 ** 8;
  308. result += 8;
  309. }
  310. if (value >= 10 ** 4) {
  311. value /= 10 ** 4;
  312. result += 4;
  313. }
  314. if (value >= 10 ** 2) {
  315. value /= 10 ** 2;
  316. result += 2;
  317. }
  318. if (value >= 10 ** 1) {
  319. result += 1;
  320. }
  321. }
  322. return result;
  323. }
  324. /**
  325. * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
  326. * Returns 0 if given 0.
  327. */
  328. function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
  329. unchecked {
  330. uint256 result = log10(value);
  331. return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
  332. }
  333. }
  334. /**
  335. * @dev Return the log in base 256, rounded down, of a positive value.
  336. * Returns 0 if given 0.
  337. *
  338. * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
  339. */
  340. function log256(uint256 value) internal pure returns (uint256) {
  341. uint256 result = 0;
  342. unchecked {
  343. if (value >> 128 > 0) {
  344. value >>= 128;
  345. result += 16;
  346. }
  347. if (value >> 64 > 0) {
  348. value >>= 64;
  349. result += 8;
  350. }
  351. if (value >> 32 > 0) {
  352. value >>= 32;
  353. result += 4;
  354. }
  355. if (value >> 16 > 0) {
  356. value >>= 16;
  357. result += 2;
  358. }
  359. if (value >> 8 > 0) {
  360. result += 1;
  361. }
  362. }
  363. return result;
  364. }
  365. /**
  366. * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
  367. * Returns 0 if given 0.
  368. */
  369. function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
  370. unchecked {
  371. uint256 result = log256(value);
  372. return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
  373. }
  374. }
  375. }