123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314 |
- // SPDX-License-Identifier: MIT
- pragma solidity ^0.8.20;
- import {Test, stdError} from "forge-std/Test.sol";
- import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
- contract MathTest is Test {
- function testSymbolicTernary(bool f, uint256 a, uint256 b) public pure {
- assertEq(Math.ternary(f, a, b), f ? a : b);
- }
- // MIN & MAX
- function testSymbolicMinMax(uint256 a, uint256 b) public pure {
- assertEq(Math.min(a, b), a < b ? a : b);
- assertEq(Math.max(a, b), a > b ? a : b);
- }
- // CEILDIV
- function testCeilDiv(uint256 a, uint256 b) public pure {
- vm.assume(b > 0);
- uint256 result = Math.ceilDiv(a, b);
- if (result == 0) {
- assertEq(a, 0);
- } else {
- uint256 expect = a / b;
- if (expect * b < a) {
- expect += 1;
- }
- assertEq(result, expect);
- }
- }
- // SQRT
- function testSqrt(uint256 input, uint8 r) public pure {
- Math.Rounding rounding = _asRounding(r);
- uint256 result = Math.sqrt(input, rounding);
- // square of result is bigger than input
- if (_squareBigger(result, input)) {
- assertTrue(Math.unsignedRoundsUp(rounding));
- assertTrue(_squareSmaller(result - 1, input));
- }
- // square of result is smaller than input
- else if (_squareSmaller(result, input)) {
- assertFalse(Math.unsignedRoundsUp(rounding));
- assertTrue(_squareBigger(result + 1, input));
- }
- // input is perfect square
- else {
- assertEq(result * result, input);
- }
- }
- function _squareBigger(uint256 value, uint256 ref) private pure returns (bool) {
- (bool noOverflow, uint256 square) = Math.tryMul(value, value);
- return !noOverflow || square > ref;
- }
- function _squareSmaller(uint256 value, uint256 ref) private pure returns (bool) {
- return value * value < ref;
- }
- // INV
- function testInvMod(uint256 value, uint256 p) public pure {
- _testInvMod(value, p, true);
- }
- function testInvMod2(uint256 seed) public pure {
- uint256 p = 2; // prime
- _testInvMod(bound(seed, 1, p - 1), p, false);
- }
- function testInvMod17(uint256 seed) public pure {
- uint256 p = 17; // prime
- _testInvMod(bound(seed, 1, p - 1), p, false);
- }
- function testInvMod65537(uint256 seed) public pure {
- uint256 p = 65537; // prime
- _testInvMod(bound(seed, 1, p - 1), p, false);
- }
- function testInvModP256(uint256 seed) public pure {
- uint256 p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff; // prime
- _testInvMod(bound(seed, 1, p - 1), p, false);
- }
- function _testInvMod(uint256 value, uint256 p, bool allowZero) private pure {
- uint256 inverse = Math.invMod(value, p);
- if (inverse != 0) {
- assertEq(mulmod(value, inverse, p), 1);
- assertLt(inverse, p);
- } else {
- assertTrue(allowZero);
- }
- }
- // LOG2
- function testLog2(uint256 input, uint8 r) public pure {
- Math.Rounding rounding = _asRounding(r);
- uint256 result = Math.log2(input, rounding);
- if (input == 0) {
- assertEq(result, 0);
- } else if (_powerOf2Bigger(result, input)) {
- assertTrue(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf2Smaller(result - 1, input));
- } else if (_powerOf2Smaller(result, input)) {
- assertFalse(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf2Bigger(result + 1, input));
- } else {
- assertEq(2 ** result, input);
- }
- }
- function _powerOf2Bigger(uint256 value, uint256 ref) private pure returns (bool) {
- return value >= 256 || 2 ** value > ref; // 2**256 overflows uint256
- }
- function _powerOf2Smaller(uint256 value, uint256 ref) private pure returns (bool) {
- return 2 ** value < ref;
- }
- // LOG10
- function testLog10(uint256 input, uint8 r) public pure {
- Math.Rounding rounding = _asRounding(r);
- uint256 result = Math.log10(input, rounding);
- if (input == 0) {
- assertEq(result, 0);
- } else if (_powerOf10Bigger(result, input)) {
- assertTrue(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf10Smaller(result - 1, input));
- } else if (_powerOf10Smaller(result, input)) {
- assertFalse(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf10Bigger(result + 1, input));
- } else {
- assertEq(10 ** result, input);
- }
- }
- function _powerOf10Bigger(uint256 value, uint256 ref) private pure returns (bool) {
- return value >= 78 || 10 ** value > ref; // 10**78 overflows uint256
- }
- function _powerOf10Smaller(uint256 value, uint256 ref) private pure returns (bool) {
- return 10 ** value < ref;
- }
- // LOG256
- function testLog256(uint256 input, uint8 r) public pure {
- Math.Rounding rounding = _asRounding(r);
- uint256 result = Math.log256(input, rounding);
- if (input == 0) {
- assertEq(result, 0);
- } else if (_powerOf256Bigger(result, input)) {
- assertTrue(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf256Smaller(result - 1, input));
- } else if (_powerOf256Smaller(result, input)) {
- assertFalse(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf256Bigger(result + 1, input));
- } else {
- assertEq(256 ** result, input);
- }
- }
- function _powerOf256Bigger(uint256 value, uint256 ref) private pure returns (bool) {
- return value >= 32 || 256 ** value > ref; // 256**32 overflows uint256
- }
- function _powerOf256Smaller(uint256 value, uint256 ref) private pure returns (bool) {
- return 256 ** value < ref;
- }
- // MULDIV
- function testMulDiv(uint256 x, uint256 y, uint256 d) public pure {
- // Full precision for x * y
- (uint256 xyHi, uint256 xyLo) = _mulHighLow(x, y);
- // Assume result won't overflow (see {testMulDivDomain})
- // This also checks that `d` is positive
- vm.assume(xyHi < d);
- // Perform muldiv
- uint256 q = Math.mulDiv(x, y, d);
- // Full precision for q * d
- (uint256 qdHi, uint256 qdLo) = _mulHighLow(q, d);
- // Add remainder of x * y / d (computed as rem = (x * y % d))
- (uint256 qdRemLo, uint256 c) = _addCarry(qdLo, mulmod(x, y, d));
- uint256 qdRemHi = qdHi + c;
- // Full precision check that x * y = q * d + rem
- assertEq(xyHi, qdRemHi);
- assertEq(xyLo, qdRemLo);
- }
- /// forge-config: default.allow_internal_expect_revert = true
- function testMulDivDomain(uint256 x, uint256 y, uint256 d) public {
- (uint256 xyHi, ) = _mulHighLow(x, y);
- // Violate {testMulDiv} assumption (covers d is 0 and result overflow)
- vm.assume(xyHi >= d);
- // we are outside the scope of {testMulDiv}, we expect muldiv to revert
- vm.expectRevert(d == 0 ? stdError.divisionError : stdError.arithmeticError);
- Math.mulDiv(x, y, d);
- }
- // MOD EXP
- /// forge-config: default.allow_internal_expect_revert = true
- function testModExp(uint256 b, uint256 e, uint256 m) public {
- if (m == 0) {
- vm.expectRevert(stdError.divisionError);
- }
- uint256 result = Math.modExp(b, e, m);
- assertLt(result, m);
- assertEq(result, _nativeModExp(b, e, m));
- }
- function testTryModExp(uint256 b, uint256 e, uint256 m) public view {
- (bool success, uint256 result) = Math.tryModExp(b, e, m);
- assertEq(success, m != 0);
- if (success) {
- assertLt(result, m);
- assertEq(result, _nativeModExp(b, e, m));
- } else {
- assertEq(result, 0);
- }
- }
- /// forge-config: default.allow_internal_expect_revert = true
- function testModExpMemory(uint256 b, uint256 e, uint256 m) public {
- if (m == 0) {
- vm.expectRevert(stdError.divisionError);
- }
- bytes memory result = Math.modExp(abi.encodePacked(b), abi.encodePacked(e), abi.encodePacked(m));
- assertEq(result.length, 0x20);
- uint256 res = abi.decode(result, (uint256));
- assertLt(res, m);
- assertEq(res, _nativeModExp(b, e, m));
- }
- function testTryModExpMemory(uint256 b, uint256 e, uint256 m) public view {
- (bool success, bytes memory result) = Math.tryModExp(
- abi.encodePacked(b),
- abi.encodePacked(e),
- abi.encodePacked(m)
- );
- if (success) {
- assertEq(result.length, 0x20); // m is a uint256, so abi.encodePacked(m).length is 0x20
- uint256 res = abi.decode(result, (uint256));
- assertLt(res, m);
- assertEq(res, _nativeModExp(b, e, m));
- } else {
- assertEq(result.length, 0);
- }
- }
- function _nativeModExp(uint256 b, uint256 e, uint256 m) private pure returns (uint256) {
- if (m == 1) return 0;
- uint256 r = 1;
- while (e > 0) {
- if (e % 2 > 0) {
- r = mulmod(r, b, m);
- }
- b = mulmod(b, b, m);
- e >>= 1;
- }
- return r;
- }
- // Helpers
- function _asRounding(uint8 r) private pure returns (Math.Rounding) {
- vm.assume(r < uint8(type(Math.Rounding).max));
- return Math.Rounding(r);
- }
- function _mulHighLow(uint256 x, uint256 y) private pure returns (uint256 high, uint256 low) {
- (uint256 x0, uint256 x1) = (x & type(uint128).max, x >> 128);
- (uint256 y0, uint256 y1) = (y & type(uint128).max, y >> 128);
- // Karatsuba algorithm
- // https://en.wikipedia.org/wiki/Karatsuba_algorithm
- uint256 z2 = x1 * y1;
- uint256 z1a = x1 * y0;
- uint256 z1b = x0 * y1;
- uint256 z0 = x0 * y0;
- uint256 carry = ((z1a & type(uint128).max) + (z1b & type(uint128).max) + (z0 >> 128)) >> 128;
- high = z2 + (z1a >> 128) + (z1b >> 128) + carry;
- unchecked {
- low = x * y;
- }
- }
- function _addCarry(uint256 x, uint256 y) private pure returns (uint256 res, uint256 carry) {
- unchecked {
- res = x + y;
- }
- carry = res < x ? 1 : 0;
- }
- }
|