123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- // SPDX-License-Identifier: MIT
- pragma solidity ^0.8.0;
- import {Hashes} from "../cryptography/Hashes.sol";
- import {Arrays} from "../Arrays.sol";
- import {Panic} from "../Panic.sol";
- /**
- * @dev Library for managing https://wikipedia.org/wiki/Merkle_Tree[Merkle Tree] data structures.
- *
- * Each tree is a complete binary tree with the ability to sequentially insert leaves, changing them from a zero to a
- * non-zero value and updating its root. This structure allows inserting commitments (or other entries) that are not
- * stored, but can be proven to be part of the tree at a later time. See {MerkleProof}.
- *
- * A tree is defined by the following parameters:
- *
- * * Depth: The number of levels in the tree, it also defines the maximum number of leaves as 2**depth.
- * * Zero value: The value that represents an empty leaf. Used to avoid regular zero values to be part of the tree.
- * * Hashing function: A cryptographic hash function used to produce internal nodes.
- *
- * _Available since v5.1._
- */
- library MerkleTree {
- /**
- * @dev A complete `bytes32` Merkle tree.
- *
- * The `sides` and `zero` arrays are set to have a length equal to the depth of the tree during setup.
- *
- * The hashing function used during initialization to compute the `zeros` values (value of a node at a given depth
- * for which the subtree is full of zero leaves). This function is kept in the structure for handling insertions.
- *
- * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
- * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
- * lead to unexpected behavior.
- *
- * NOTE: The `root` is kept up to date after each insertion without keeping track of its history. Consider
- * using a secondary structure to store a list of historical roots (e.g. a mapping, {BitMaps} or {Checkpoints}).
- *
- * WARNING: Updating any of the tree's parameters after the first insertion will result in a corrupted tree.
- */
- struct Bytes32PushTree {
- bytes32 _root;
- uint256 _nextLeafIndex;
- bytes32[] _sides;
- bytes32[] _zeros;
- function(bytes32, bytes32) view returns (bytes32) _fnHash;
- }
- /**
- * @dev Initialize a {Bytes32PushTree} using {Hashes-commutativeKeccak256} to hash internal nodes.
- * The capacity of the tree (i.e. number of leaves) is set to `2**levels`.
- *
- * Calling this function on MerkleTree that was already setup and used will reset it to a blank state.
- *
- * IMPORTANT: The zero value should be carefully chosen since it will be stored in the tree representing
- * empty leaves. It should be a value that is not expected to be part of the tree.
- */
- function setup(Bytes32PushTree storage self, uint8 levels, bytes32 zero) internal {
- return setup(self, levels, zero, Hashes.commutativeKeccak256);
- }
- /**
- * @dev Same as {setup}, but allows to specify a custom hashing function.
- *
- * IMPORTANT: Providing a custom hashing function is a security-sensitive operation since it may
- * compromise the soundness of the tree. Consider using functions from {Hashes}.
- */
- function setup(
- Bytes32PushTree storage self,
- uint8 levels,
- bytes32 zero,
- function(bytes32, bytes32) view returns (bytes32) fnHash
- ) internal {
- // Store depth in the dynamic array
- Arrays.unsafeSetLength(self._sides, levels);
- Arrays.unsafeSetLength(self._zeros, levels);
- // Build each root of zero-filled subtrees
- bytes32 currentZero = zero;
- for (uint32 i = 0; i < levels; ++i) {
- Arrays.unsafeAccess(self._zeros, i).value = currentZero;
- currentZero = fnHash(currentZero, currentZero);
- }
- // Set the first root
- self._root = currentZero;
- self._nextLeafIndex = 0;
- self._fnHash = fnHash;
- }
- /**
- * @dev Insert a new leaf in the tree, and compute the new root. Returns the position of the inserted leaf in the
- * tree, and the resulting root.
- *
- * Hashing the leaf before calling this function is recommended as a protection against
- * second pre-image attacks.
- */
- function push(Bytes32PushTree storage self, bytes32 leaf) internal returns (uint256 index, bytes32 newRoot) {
- // Cache read
- uint256 levels = self._zeros.length;
- function(bytes32, bytes32) view returns (bytes32) fnHash = self._fnHash;
- // Get leaf index
- uint256 leafIndex = self._nextLeafIndex++;
- // Check if tree is full.
- if (leafIndex >= 1 << levels) {
- Panic.panic(Panic.RESOURCE_ERROR);
- }
- // Rebuild branch from leaf to root
- uint256 currentIndex = leafIndex;
- bytes32 currentLevelHash = leaf;
- for (uint32 i = 0; i < levels; i++) {
- // Reaching the parent node, is currentLevelHash the left child?
- bool isLeft = currentIndex % 2 == 0;
- // If so, next time we will come from the right, so we need to save it
- if (isLeft) {
- Arrays.unsafeAccess(self._sides, i).value = currentLevelHash;
- }
- // Compute the current node hash by using the hash function
- // with either the its sibling (side) or the zero value for that level.
- currentLevelHash = fnHash(
- isLeft ? currentLevelHash : Arrays.unsafeAccess(self._sides, i).value,
- isLeft ? Arrays.unsafeAccess(self._zeros, i).value : currentLevelHash
- );
- // Update node index
- currentIndex >>= 1;
- }
- // Record new root
- self._root = currentLevelHash;
- return (leafIndex, currentLevelHash);
- }
- /**
- * @dev Tree's current root
- */
- function root(Bytes32PushTree storage self) internal view returns (bytes32) {
- return self._root;
- }
- /**
- * @dev Tree's depth (set at initialization)
- */
- function depth(Bytes32PushTree storage self) internal view returns (uint256) {
- return self._zeros.length;
- }
- }
|