Math.sol 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. // SPDX-License-Identifier: MIT
  2. // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
  3. pragma solidity ^0.8.0;
  4. /**
  5. * @dev Standard math utilities missing in the Solidity language.
  6. */
  7. library Math {
  8. enum Rounding {
  9. Down, // Toward negative infinity
  10. Up, // Toward infinity
  11. Zero // Toward zero
  12. }
  13. /**
  14. * @dev Returns the largest of two numbers.
  15. */
  16. function max(uint256 a, uint256 b) internal pure returns (uint256) {
  17. return a > b ? a : b;
  18. }
  19. /**
  20. * @dev Returns the smallest of two numbers.
  21. */
  22. function min(uint256 a, uint256 b) internal pure returns (uint256) {
  23. return a < b ? a : b;
  24. }
  25. /**
  26. * @dev Returns the average of two numbers. The result is rounded towards
  27. * zero.
  28. */
  29. function average(uint256 a, uint256 b) internal pure returns (uint256) {
  30. // (a + b) / 2 can overflow.
  31. return (a & b) + (a ^ b) / 2;
  32. }
  33. /**
  34. * @dev Returns the ceiling of the division of two numbers.
  35. *
  36. * This differs from standard division with `/` in that it rounds up instead
  37. * of rounding down.
  38. */
  39. function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
  40. // (a + b - 1) / b can overflow on addition, so we distribute.
  41. return a == 0 ? 0 : (a - 1) / b + 1;
  42. }
  43. /**
  44. * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
  45. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
  46. * with further edits by Uniswap Labs also under MIT license.
  47. */
  48. function mulDiv(
  49. uint256 x,
  50. uint256 y,
  51. uint256 denominator
  52. ) internal pure returns (uint256 result) {
  53. unchecked {
  54. // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
  55. // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
  56. // variables such that product = prod1 * 2^256 + prod0.
  57. uint256 prod0; // Least significant 256 bits of the product
  58. uint256 prod1; // Most significant 256 bits of the product
  59. assembly {
  60. let mm := mulmod(x, y, not(0))
  61. prod0 := mul(x, y)
  62. prod1 := sub(sub(mm, prod0), lt(mm, prod0))
  63. }
  64. // Handle non-overflow cases, 256 by 256 division.
  65. if (prod1 == 0) {
  66. return prod0 / denominator;
  67. }
  68. // Make sure the result is less than 2^256. Also prevents denominator == 0.
  69. require(denominator > prod1, "Math: mulDiv overflow");
  70. ///////////////////////////////////////////////
  71. // 512 by 256 division.
  72. ///////////////////////////////////////////////
  73. // Make division exact by subtracting the remainder from [prod1 prod0].
  74. uint256 remainder;
  75. assembly {
  76. // Compute remainder using mulmod.
  77. remainder := mulmod(x, y, denominator)
  78. // Subtract 256 bit number from 512 bit number.
  79. prod1 := sub(prod1, gt(remainder, prod0))
  80. prod0 := sub(prod0, remainder)
  81. }
  82. // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
  83. // See https://cs.stackexchange.com/q/138556/92363.
  84. // Does not overflow because the denominator cannot be zero at this stage in the function.
  85. uint256 twos = denominator & (~denominator + 1);
  86. assembly {
  87. // Divide denominator by twos.
  88. denominator := div(denominator, twos)
  89. // Divide [prod1 prod0] by twos.
  90. prod0 := div(prod0, twos)
  91. // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
  92. twos := add(div(sub(0, twos), twos), 1)
  93. }
  94. // Shift in bits from prod1 into prod0.
  95. prod0 |= prod1 * twos;
  96. // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
  97. // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
  98. // four bits. That is, denominator * inv = 1 mod 2^4.
  99. uint256 inverse = (3 * denominator) ^ 2;
  100. // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
  101. // in modular arithmetic, doubling the correct bits in each step.
  102. inverse *= 2 - denominator * inverse; // inverse mod 2^8
  103. inverse *= 2 - denominator * inverse; // inverse mod 2^16
  104. inverse *= 2 - denominator * inverse; // inverse mod 2^32
  105. inverse *= 2 - denominator * inverse; // inverse mod 2^64
  106. inverse *= 2 - denominator * inverse; // inverse mod 2^128
  107. inverse *= 2 - denominator * inverse; // inverse mod 2^256
  108. // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
  109. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
  110. // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
  111. // is no longer required.
  112. result = prod0 * inverse;
  113. return result;
  114. }
  115. }
  116. /**
  117. * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
  118. */
  119. function mulDiv(
  120. uint256 x,
  121. uint256 y,
  122. uint256 denominator,
  123. Rounding rounding
  124. ) internal pure returns (uint256) {
  125. uint256 result = mulDiv(x, y, denominator);
  126. if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
  127. result += 1;
  128. }
  129. return result;
  130. }
  131. /**
  132. * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
  133. *
  134. * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
  135. */
  136. function sqrt(uint256 a) internal pure returns (uint256) {
  137. if (a == 0) {
  138. return 0;
  139. }
  140. // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
  141. //
  142. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
  143. // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
  144. //
  145. // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
  146. // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
  147. // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
  148. //
  149. // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
  150. uint256 result = 1 << (log2(a) >> 1);
  151. // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
  152. // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
  153. // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
  154. // into the expected uint128 result.
  155. unchecked {
  156. result = (result + a / result) >> 1;
  157. result = (result + a / result) >> 1;
  158. result = (result + a / result) >> 1;
  159. result = (result + a / result) >> 1;
  160. result = (result + a / result) >> 1;
  161. result = (result + a / result) >> 1;
  162. result = (result + a / result) >> 1;
  163. return min(result, a / result);
  164. }
  165. }
  166. /**
  167. * @notice Calculates sqrt(a), following the selected rounding direction.
  168. */
  169. function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
  170. unchecked {
  171. uint256 result = sqrt(a);
  172. return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
  173. }
  174. }
  175. /**
  176. * @dev Return the log in base 2, rounded down, of a positive value.
  177. * Returns 0 if given 0.
  178. */
  179. function log2(uint256 value) internal pure returns (uint256) {
  180. uint256 result = 0;
  181. unchecked {
  182. if (value >> 128 > 0) {
  183. value >>= 128;
  184. result += 128;
  185. }
  186. if (value >> 64 > 0) {
  187. value >>= 64;
  188. result += 64;
  189. }
  190. if (value >> 32 > 0) {
  191. value >>= 32;
  192. result += 32;
  193. }
  194. if (value >> 16 > 0) {
  195. value >>= 16;
  196. result += 16;
  197. }
  198. if (value >> 8 > 0) {
  199. value >>= 8;
  200. result += 8;
  201. }
  202. if (value >> 4 > 0) {
  203. value >>= 4;
  204. result += 4;
  205. }
  206. if (value >> 2 > 0) {
  207. value >>= 2;
  208. result += 2;
  209. }
  210. if (value >> 1 > 0) {
  211. result += 1;
  212. }
  213. }
  214. return result;
  215. }
  216. /**
  217. * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
  218. * Returns 0 if given 0.
  219. */
  220. function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
  221. unchecked {
  222. uint256 result = log2(value);
  223. return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
  224. }
  225. }
  226. /**
  227. * @dev Return the log in base 10, rounded down, of a positive value.
  228. * Returns 0 if given 0.
  229. */
  230. function log10(uint256 value) internal pure returns (uint256) {
  231. uint256 result = 0;
  232. unchecked {
  233. if (value >= 10**64) {
  234. value /= 10**64;
  235. result += 64;
  236. }
  237. if (value >= 10**32) {
  238. value /= 10**32;
  239. result += 32;
  240. }
  241. if (value >= 10**16) {
  242. value /= 10**16;
  243. result += 16;
  244. }
  245. if (value >= 10**8) {
  246. value /= 10**8;
  247. result += 8;
  248. }
  249. if (value >= 10**4) {
  250. value /= 10**4;
  251. result += 4;
  252. }
  253. if (value >= 10**2) {
  254. value /= 10**2;
  255. result += 2;
  256. }
  257. if (value >= 10**1) {
  258. result += 1;
  259. }
  260. }
  261. return result;
  262. }
  263. /**
  264. * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
  265. * Returns 0 if given 0.
  266. */
  267. function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
  268. unchecked {
  269. uint256 result = log10(value);
  270. return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
  271. }
  272. }
  273. /**
  274. * @dev Return the log in base 256, rounded down, of a positive value.
  275. * Returns 0 if given 0.
  276. *
  277. * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
  278. */
  279. function log256(uint256 value) internal pure returns (uint256) {
  280. uint256 result = 0;
  281. unchecked {
  282. if (value >> 128 > 0) {
  283. value >>= 128;
  284. result += 16;
  285. }
  286. if (value >> 64 > 0) {
  287. value >>= 64;
  288. result += 8;
  289. }
  290. if (value >> 32 > 0) {
  291. value >>= 32;
  292. result += 4;
  293. }
  294. if (value >> 16 > 0) {
  295. value >>= 16;
  296. result += 2;
  297. }
  298. if (value >> 8 > 0) {
  299. result += 1;
  300. }
  301. }
  302. return result;
  303. }
  304. /**
  305. * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
  306. * Returns 0 if given 0.
  307. */
  308. function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
  309. unchecked {
  310. uint256 result = log256(value);
  311. return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
  312. }
  313. }
  314. }