123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- // SPDX-License-Identifier: MIT
- pragma solidity ^0.8.20;
- import {Test} from "forge-std/Test.sol";
- import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
- contract MathTest is Test {
- // CEILDIV
- function testCeilDiv(uint256 a, uint256 b) public {
- vm.assume(b > 0);
- uint256 result = Math.ceilDiv(a, b);
- if (result == 0) {
- assertEq(a, 0);
- } else {
- uint256 maxdiv = UINT256_MAX / b;
- bool overflow = maxdiv * b < a;
- assertTrue(a > b * (result - 1));
- assertTrue(overflow ? result == maxdiv + 1 : a <= b * result);
- }
- }
- // SQRT
- function testSqrt(uint256 input, uint8 r) public {
- Math.Rounding rounding = _asRounding(r);
- uint256 result = Math.sqrt(input, rounding);
- // square of result is bigger than input
- if (_squareBigger(result, input)) {
- assertTrue(Math.unsignedRoundsUp(rounding));
- assertTrue(_squareSmaller(result - 1, input));
- }
- // square of result is smaller than input
- else if (_squareSmaller(result, input)) {
- assertFalse(Math.unsignedRoundsUp(rounding));
- assertTrue(_squareBigger(result + 1, input));
- }
- // input is perfect square
- else {
- assertEq(result * result, input);
- }
- }
- function _squareBigger(uint256 value, uint256 ref) private pure returns (bool) {
- (bool noOverflow, uint256 square) = Math.tryMul(value, value);
- return !noOverflow || square > ref;
- }
- function _squareSmaller(uint256 value, uint256 ref) private pure returns (bool) {
- return value * value < ref;
- }
- // LOG2
- function testLog2(uint256 input, uint8 r) public {
- Math.Rounding rounding = _asRounding(r);
- uint256 result = Math.log2(input, rounding);
- if (input == 0) {
- assertEq(result, 0);
- } else if (_powerOf2Bigger(result, input)) {
- assertTrue(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf2Smaller(result - 1, input));
- } else if (_powerOf2Smaller(result, input)) {
- assertFalse(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf2Bigger(result + 1, input));
- } else {
- assertEq(2 ** result, input);
- }
- }
- function _powerOf2Bigger(uint256 value, uint256 ref) private pure returns (bool) {
- return value >= 256 || 2 ** value > ref; // 2**256 overflows uint256
- }
- function _powerOf2Smaller(uint256 value, uint256 ref) private pure returns (bool) {
- return 2 ** value < ref;
- }
- // LOG10
- function testLog10(uint256 input, uint8 r) public {
- Math.Rounding rounding = _asRounding(r);
- uint256 result = Math.log10(input, rounding);
- if (input == 0) {
- assertEq(result, 0);
- } else if (_powerOf10Bigger(result, input)) {
- assertTrue(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf10Smaller(result - 1, input));
- } else if (_powerOf10Smaller(result, input)) {
- assertFalse(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf10Bigger(result + 1, input));
- } else {
- assertEq(10 ** result, input);
- }
- }
- function _powerOf10Bigger(uint256 value, uint256 ref) private pure returns (bool) {
- return value >= 78 || 10 ** value > ref; // 10**78 overflows uint256
- }
- function _powerOf10Smaller(uint256 value, uint256 ref) private pure returns (bool) {
- return 10 ** value < ref;
- }
- // LOG256
- function testLog256(uint256 input, uint8 r) public {
- Math.Rounding rounding = _asRounding(r);
- uint256 result = Math.log256(input, rounding);
- if (input == 0) {
- assertEq(result, 0);
- } else if (_powerOf256Bigger(result, input)) {
- assertTrue(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf256Smaller(result - 1, input));
- } else if (_powerOf256Smaller(result, input)) {
- assertFalse(Math.unsignedRoundsUp(rounding));
- assertTrue(_powerOf256Bigger(result + 1, input));
- } else {
- assertEq(256 ** result, input);
- }
- }
- function _powerOf256Bigger(uint256 value, uint256 ref) private pure returns (bool) {
- return value >= 32 || 256 ** value > ref; // 256**32 overflows uint256
- }
- function _powerOf256Smaller(uint256 value, uint256 ref) private pure returns (bool) {
- return 256 ** value < ref;
- }
- // MULDIV
- function testMulDiv(uint256 x, uint256 y, uint256 d) public {
- // Full precision for x * y
- (uint256 xyHi, uint256 xyLo) = _mulHighLow(x, y);
- // Assume result won't overflow (see {testMulDivDomain})
- // This also checks that `d` is positive
- vm.assume(xyHi < d);
- // Perform muldiv
- uint256 q = Math.mulDiv(x, y, d);
- // Full precision for q * d
- (uint256 qdHi, uint256 qdLo) = _mulHighLow(q, d);
- // Add remainder of x * y / d (computed as rem = (x * y % d))
- (uint256 qdRemLo, uint256 c) = _addCarry(qdLo, _mulmod(x, y, d));
- uint256 qdRemHi = qdHi + c;
- // Full precision check that x * y = q * d + rem
- assertEq(xyHi, qdRemHi);
- assertEq(xyLo, qdRemLo);
- }
- function testMulDivDomain(uint256 x, uint256 y, uint256 d) public {
- (uint256 xyHi, ) = _mulHighLow(x, y);
- // Violate {testMulDiv} assumption (covers d is 0 and result overflow)
- vm.assume(xyHi >= d);
- // we are outside the scope of {testMulDiv}, we expect muldiv to revert
- try this.muldiv(x, y, d) returns (uint256) {
- fail();
- } catch {}
- }
- // External call
- function muldiv(uint256 x, uint256 y, uint256 d) external pure returns (uint256) {
- return Math.mulDiv(x, y, d);
- }
- // Helpers
- function _asRounding(uint8 r) private pure returns (Math.Rounding) {
- vm.assume(r < uint8(type(Math.Rounding).max));
- return Math.Rounding(r);
- }
- function _mulmod(uint256 x, uint256 y, uint256 z) private pure returns (uint256 r) {
- assembly {
- r := mulmod(x, y, z)
- }
- }
- function _mulHighLow(uint256 x, uint256 y) private pure returns (uint256 high, uint256 low) {
- (uint256 x0, uint256 x1) = (x & type(uint128).max, x >> 128);
- (uint256 y0, uint256 y1) = (y & type(uint128).max, y >> 128);
- // Karatsuba algorithm
- // https://en.wikipedia.org/wiki/Karatsuba_algorithm
- uint256 z2 = x1 * y1;
- uint256 z1a = x1 * y0;
- uint256 z1b = x0 * y1;
- uint256 z0 = x0 * y0;
- uint256 carry = ((z1a & type(uint128).max) + (z1b & type(uint128).max) + (z0 >> 128)) >> 128;
- high = z2 + (z1a >> 128) + (z1b >> 128) + carry;
- unchecked {
- low = x * y;
- }
- }
- function _addCarry(uint256 x, uint256 y) private pure returns (uint256 res, uint256 carry) {
- unchecked {
- res = x + y;
- }
- carry = res < x ? 1 : 0;
- }
- }
|