ECDSA.sol 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111
  1. // SPDX-License-Identifier: MIT
  2. pragma solidity ^0.8.0;
  3. /**
  4. * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
  5. *
  6. * These functions can be used to verify that a message was signed by the holder
  7. * of the private keys of a given address.
  8. */
  9. library ECDSA {
  10. /**
  11. * @dev Returns the address that signed a hashed message (`hash`) with
  12. * `signature`. This address can then be used for verification purposes.
  13. *
  14. * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
  15. * this function rejects them by requiring the `s` value to be in the lower
  16. * half order, and the `v` value to be either 27 or 28.
  17. *
  18. * IMPORTANT: `hash` _must_ be the result of a hash operation for the
  19. * verification to be secure: it is possible to craft signatures that
  20. * recover to arbitrary addresses for non-hashed data. A safe way to ensure
  21. * this is by receiving a hash of the original message (which may otherwise
  22. * be too long), and then calling {toEthSignedMessageHash} on it.
  23. */
  24. function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
  25. // Divide the signature in r, s and v variables
  26. bytes32 r;
  27. bytes32 s;
  28. uint8 v;
  29. // Check the signature length
  30. // - case 65: r,s,v signature (standard)
  31. // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
  32. if (signature.length == 65) {
  33. // ecrecover takes the signature parameters, and the only way to get them
  34. // currently is to use assembly.
  35. // solhint-disable-next-line no-inline-assembly
  36. assembly {
  37. r := mload(add(signature, 0x20))
  38. s := mload(add(signature, 0x40))
  39. v := byte(0, mload(add(signature, 0x60)))
  40. }
  41. } else if (signature.length == 64) {
  42. // ecrecover takes the signature parameters, and the only way to get them
  43. // currently is to use assembly.
  44. // solhint-disable-next-line no-inline-assembly
  45. assembly {
  46. let vs := mload(add(signature, 0x40))
  47. r := mload(add(signature, 0x20))
  48. s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
  49. v := add(shr(255, vs), 27)
  50. }
  51. } else {
  52. revert("ECDSA: invalid signature length");
  53. }
  54. return recover(hash, v, r, s);
  55. }
  56. /**
  57. * @dev Overload of {ECDSA-recover} that receives the `v`,
  58. * `r` and `s` signature fields separately.
  59. */
  60. function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
  61. // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
  62. // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
  63. // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
  64. // signatures from current libraries generate a unique signature with an s-value in the lower half order.
  65. //
  66. // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
  67. // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
  68. // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
  69. // these malleable signatures as well.
  70. require(uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature 's' value");
  71. require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value");
  72. // If the signature is valid (and not malleable), return the signer address
  73. address signer = ecrecover(hash, v, r, s);
  74. require(signer != address(0), "ECDSA: invalid signature");
  75. return signer;
  76. }
  77. /**
  78. * @dev Returns an Ethereum Signed Message, created from a `hash`. This
  79. * produces hash corresponding to the one signed with the
  80. * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
  81. * JSON-RPC method as part of EIP-191.
  82. *
  83. * See {recover}.
  84. */
  85. function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
  86. // 32 is the length in bytes of hash,
  87. // enforced by the type signature above
  88. return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
  89. }
  90. /**
  91. * @dev Returns an Ethereum Signed Typed Data, created from a
  92. * `domainSeparator` and a `structHash`. This produces hash corresponding
  93. * to the one signed with the
  94. * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
  95. * JSON-RPC method as part of EIP-712.
  96. *
  97. * See {recover}.
  98. */
  99. function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
  100. return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
  101. }
  102. }