1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- // SPDX-License-Identifier: MIT
- pragma solidity ^0.6.0;
- /**
- * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
- *
- * These functions can be used to verify that a message was signed by the holder
- * of the private keys of a given address.
- */
- library ECDSA {
- /**
- * @dev Returns the address that signed a hashed message (`hash`) with
- * `signature`. This address can then be used for verification purposes.
- *
- * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
- * this function rejects them by requiring the `s` value to be in the lower
- * half order, and the `v` value to be either 27 or 28.
- *
- * IMPORTANT: `hash` _must_ be the result of a hash operation for the
- * verification to be secure: it is possible to craft signatures that
- * recover to arbitrary addresses for non-hashed data. A safe way to ensure
- * this is by receiving a hash of the original message (which may otherwise
- * be too long), and then calling {toEthSignedMessageHash} on it.
- */
- function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
- // Check the signature length
- if (signature.length != 65) {
- revert("ECDSA: invalid signature length");
- }
- // Divide the signature in r, s and v variables
- bytes32 r;
- bytes32 s;
- uint8 v;
- // ecrecover takes the signature parameters, and the only way to get them
- // currently is to use assembly.
- // solhint-disable-next-line no-inline-assembly
- assembly {
- r := mload(add(signature, 0x20))
- s := mload(add(signature, 0x40))
- v := byte(0, mload(add(signature, 0x60)))
- }
- // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
- // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
- // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
- // signatures from current libraries generate a unique signature with an s-value in the lower half order.
- //
- // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
- // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
- // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
- // these malleable signatures as well.
- if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
- revert("ECDSA: invalid signature 's' value");
- }
- if (v != 27 && v != 28) {
- revert("ECDSA: invalid signature 'v' value");
- }
- // If the signature is valid (and not malleable), return the signer address
- address signer = ecrecover(hash, v, r, s);
- require(signer != address(0), "ECDSA: invalid signature");
- return signer;
- }
- /**
- * @dev Returns an Ethereum Signed Message, created from a `hash`. This
- * replicates the behavior of the
- * https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`]
- * JSON-RPC method.
- *
- * See {recover}.
- */
- function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
- // 32 is the length in bytes of hash,
- // enforced by the type signature above
- return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
- }
- }
|