RSA.sol 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154
  1. // SPDX-License-Identifier: MIT
  2. // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/RSA.sol)
  3. pragma solidity ^0.8.20;
  4. import {Math} from "../math/Math.sol";
  5. /**
  6. * @dev RSA PKCS#1 v1.5 signature verification implementation according to https://datatracker.ietf.org/doc/html/rfc8017[RFC8017].
  7. *
  8. * This library supports PKCS#1 v1.5 padding to avoid malleability via chosen plaintext attacks in practical implementations.
  9. * The padding follows the EMSA-PKCS1-v1_5-ENCODE encoding definition as per section 9.2 of the RFC. This padding makes
  10. * RSA semantically secure for signing messages.
  11. *
  12. * Inspired by https://github.com/adria0/SolRsaVerify/blob/79c6182cabb9102ea69d4a2e996816091d5f1cd1[Adrià Massanet's work] (GNU General Public License v3.0).
  13. *
  14. * _Available since v5.1._
  15. */
  16. library RSA {
  17. /**
  18. * @dev Same as {pkcs1Sha256} but using SHA256 to calculate the digest of `data`.
  19. */
  20. function pkcs1Sha256(
  21. bytes memory data,
  22. bytes memory s,
  23. bytes memory e,
  24. bytes memory n
  25. ) internal view returns (bool) {
  26. return pkcs1Sha256(sha256(data), s, e, n);
  27. }
  28. /**
  29. * @dev Verifies a PKCSv1.5 signature given a digest according to the verification
  30. * method described in https://datatracker.ietf.org/doc/html/rfc8017#section-8.2.2[section 8.2.2 of RFC8017] with
  31. * support for explicit or implicit NULL parameters in the DigestInfo (no other optional parameters are supported).
  32. *
  33. * IMPORTANT: For security reason, this function requires the signature and modulus to have a length of at least
  34. * 2048 bits. If you use a smaller key, consider replacing it with a larger, more secure, one.
  35. *
  36. * WARNING: This verification algorithm doesn't prevent replayability. If called multiple times with the same
  37. * digest, public key and (valid signature), it will return true every time. Consider including an onchain nonce
  38. * or unique identifier in the message to prevent replay attacks.
  39. *
  40. * WARNING: This verification algorithm supports any exponent. NIST recommends using `65537` (or higher).
  41. * That is the default value many libraries use, such as OpenSSL. Developers may choose to reject public keys
  42. * using a low exponent out of security concerns.
  43. *
  44. * @param digest the digest to verify
  45. * @param s is a buffer containing the signature
  46. * @param e is the exponent of the public key
  47. * @param n is the modulus of the public key
  48. */
  49. function pkcs1Sha256(bytes32 digest, bytes memory s, bytes memory e, bytes memory n) internal view returns (bool) {
  50. unchecked {
  51. // cache and check length
  52. uint256 length = n.length;
  53. if (
  54. length < 0x100 || // Enforce 2048 bits minimum
  55. length != s.length // signature must have the same length as the finite field
  56. ) {
  57. return false;
  58. }
  59. // Verify that s < n to ensure there's only one valid signature for a given message
  60. for (uint256 i = 0; i < length; i += 0x20) {
  61. uint256 p = Math.min(i, length - 0x20);
  62. bytes32 sp = _unsafeReadBytes32(s, p);
  63. bytes32 np = _unsafeReadBytes32(n, p);
  64. if (sp < np) {
  65. // s < n in the upper bits (everything before is equal) → s < n globally: ok
  66. break;
  67. } else if (sp > np || p == length - 0x20) {
  68. // s > n in the upper bits (everything before is equal) → s > n globally: fail
  69. // or
  70. // s = n and we are looking at the lower bits → s = n globally: fail
  71. return false;
  72. }
  73. }
  74. // RSAVP1 https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.2
  75. // The previous check guarantees that n > 0. Therefore modExp cannot revert.
  76. bytes memory buffer = Math.modExp(s, e, n);
  77. // Check that buffer is well encoded:
  78. // buffer ::= 0x00 | 0x01 | PS | 0x00 | DigestInfo
  79. //
  80. // With
  81. // - PS is padding filled with 0xFF
  82. // - DigestInfo ::= SEQUENCE {
  83. // digestAlgorithm AlgorithmIdentifier,
  84. // [optional algorithm parameters] -- not currently supported
  85. // digest OCTET STRING
  86. // }
  87. // Get AlgorithmIdentifier from the DigestInfo, and set the config accordingly
  88. // - params: includes 00 + first part of DigestInfo
  89. // - mask: filter to check the params
  90. // - offset: length of the suffix (including digest)
  91. bytes32 params; // 0x00 | DigestInfo
  92. bytes32 mask;
  93. uint256 offset;
  94. // Digest is expected at the end of the buffer. Therefore if NULL param is present,
  95. // it should be at 32 (digest) + 2 bytes from the end. To those 34 bytes, we add the
  96. // OID (9 bytes) and its length (2 bytes) to get the position of the DigestInfo sequence,
  97. // which is expected to have a length of 0x31 when the NULL param is present or 0x2f if not.
  98. if (bytes1(_unsafeReadBytes32(buffer, length - 0x32)) == 0x31) {
  99. offset = 0x34;
  100. // 00 (1 byte) | SEQUENCE length (0x31) = 3031 (2 bytes) | SEQUENCE length (0x0d) = 300d (2 bytes) | OBJECT_IDENTIFIER length (0x09) = 0609 (2 bytes)
  101. // SHA256 OID = 608648016503040201 (9 bytes) | NULL = 0500 (2 bytes) (explicit) | OCTET_STRING length (0x20) = 0420 (2 bytes)
  102. params = 0x003031300d060960864801650304020105000420000000000000000000000000;
  103. mask = 0xffffffffffffffffffffffffffffffffffffffff000000000000000000000000; // (20 bytes)
  104. } else if (bytes1(_unsafeReadBytes32(buffer, length - 0x30)) == 0x2F) {
  105. offset = 0x32;
  106. // 00 (1 byte) | SEQUENCE length (0x2f) = 302f (2 bytes) | SEQUENCE length (0x0b) = 300b (2 bytes) | OBJECT_IDENTIFIER length (0x09) = 0609 (2 bytes)
  107. // SHA256 OID = 608648016503040201 (9 bytes) | NULL = <implicit> | OCTET_STRING length (0x20) = 0420 (2 bytes)
  108. params = 0x00302f300b060960864801650304020104200000000000000000000000000000;
  109. mask = 0xffffffffffffffffffffffffffffffffffff0000000000000000000000000000; // (18 bytes)
  110. } else {
  111. // unknown
  112. return false;
  113. }
  114. // Length is at least 0x100 and offset is at most 0x34, so this is safe. There is always some padding.
  115. uint256 paddingEnd = length - offset;
  116. // The padding has variable (arbitrary) length, so we check it byte per byte in a loop.
  117. // This is required to ensure non-malleability. Not checking would allow an attacker to
  118. // use the padding to manipulate the message in order to create a valid signature out of
  119. // multiple valid signatures.
  120. for (uint256 i = 2; i < paddingEnd; ++i) {
  121. if (bytes1(_unsafeReadBytes32(buffer, i)) != 0xFF) {
  122. return false;
  123. }
  124. }
  125. // All the other parameters are small enough to fit in a bytes32, so we can check them directly.
  126. return
  127. bytes2(0x0001) == bytes2(_unsafeReadBytes32(buffer, 0x00)) && // 00 | 01
  128. // PS was checked in the loop
  129. params == _unsafeReadBytes32(buffer, paddingEnd) & mask && // DigestInfo
  130. // Optional parameters are not checked
  131. digest == _unsafeReadBytes32(buffer, length - 0x20); // Digest
  132. }
  133. }
  134. /// @dev Reads a bytes32 from a bytes array without bounds checking.
  135. function _unsafeReadBytes32(bytes memory array, uint256 offset) private pure returns (bytes32 result) {
  136. // Memory safeness is guaranteed as long as the provided `array` is a Solidity-allocated bytes array
  137. // and `offset` is within bounds. This is the case for all calls to this private function from {pkcs1Sha256}.
  138. assembly ("memory-safe") {
  139. result := mload(add(add(array, 0x20), offset))
  140. }
  141. }
  142. }