RSA.sol 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. // SPDX-License-Identifier: MIT
  2. pragma solidity ^0.8.20;
  3. import {Math} from "../math/Math.sol";
  4. /**
  5. * @dev RSA PKCS#1 v1.5 signature verification implementation according to https://datatracker.ietf.org/doc/html/rfc8017[RFC8017].
  6. *
  7. * This library supports PKCS#1 v1.5 padding to avoid malleability via chosen plaintext attacks in practical implementations.
  8. * The padding follows the EMSA-PKCS1-v1_5-ENCODE encoding definition as per section 9.2 of the RFC. This padding makes
  9. * RSA semantically secure for signing messages.
  10. *
  11. * Inspired by https://github.com/adria0/SolRsaVerify[Adrià Massanet's work]
  12. */
  13. library RSA {
  14. /**
  15. * @dev Same as {pkcs1} but using SHA256 to calculate the digest of `data`.
  16. */
  17. function pkcs1Sha256(
  18. bytes memory data,
  19. bytes memory s,
  20. bytes memory e,
  21. bytes memory n
  22. ) internal view returns (bool) {
  23. return pkcs1(sha256(data), s, e, n);
  24. }
  25. /**
  26. * @dev Verifies a PKCSv1.5 signature given a digest according to the verification
  27. * method described in https://datatracker.ietf.org/doc/html/rfc8017#section-8.2.2[section 8.2.2 of RFC8017].
  28. *
  29. * IMPORTANT: Although this function allows for it, using n of length 1024 bits is considered unsafe.
  30. * Consider using at least 2048 bits.
  31. *
  32. * WARNING: PKCS#1 v1.5 allows for replayability given the message may contain arbitrary optional parameters in the
  33. * DigestInfo. Consider using an onchain nonce or unique identifier to include in the message to prevent replay attacks.
  34. *
  35. * @param digest the digest to verify
  36. * @param s is a buffer containing the signature
  37. * @param e is the exponent of the public key
  38. * @param n is the modulus of the public key
  39. */
  40. function pkcs1(bytes32 digest, bytes memory s, bytes memory e, bytes memory n) internal view returns (bool) {
  41. unchecked {
  42. // cache and check length
  43. uint256 length = n.length;
  44. if (
  45. length < 0x40 || // PKCS#1 padding is slightly less than 0x40 bytes at the bare minimum
  46. length != s.length // signature must have the same length as the finite field
  47. ) {
  48. return false;
  49. }
  50. // Verify that s < n to ensure there's only one valid signature for a given message
  51. for (uint256 i = 0; i < length; i += 0x20) {
  52. uint256 p = Math.min(i, length - 0x20);
  53. bytes32 sp = _unsafeReadBytes32(s, p);
  54. bytes32 np = _unsafeReadBytes32(n, p);
  55. if (sp < np) {
  56. // s < n in the upper bits (everything before is equal) → s < n globally: ok
  57. break;
  58. } else if (sp > np || p == length - 0x20) {
  59. // s > n in the upper bits (everything before is equal) → s > n globally: fail
  60. // or
  61. // s = n and we are looking at the lower bits → s = n globally: fail
  62. return false;
  63. }
  64. }
  65. // RSAVP1 https://datatracker.ietf.org/doc/html/rfc8017#section-5.2.2
  66. // The previous check guarantees that n > 0. Therefore modExp cannot revert.
  67. bytes memory buffer = Math.modExp(s, e, n);
  68. // Check that buffer is well encoded:
  69. // buffer ::= 0x00 | 0x01 | PS | 0x00 | DigestInfo
  70. //
  71. // With
  72. // - PS is padding filled with 0xFF
  73. // - DigestInfo ::= SEQUENCE {
  74. // digestAlgorithm AlgorithmIdentifier,
  75. // [optional algorithm parameters]
  76. // digest OCTET STRING
  77. // }
  78. // Get AlgorithmIdentifier from the DigestInfo, and set the config accordingly
  79. // - params: includes 00 + first part of DigestInfo
  80. // - mask: filter to check the params
  81. // - offset: length of the suffix (including digest)
  82. bytes32 params; // 0x00 | DigestInfo
  83. bytes32 mask;
  84. uint256 offset;
  85. // Digest is expected at the end of the buffer. Therefore if NULL param is present,
  86. // it should be at 32 (digest) + 2 bytes from the end. To those 34 bytes, we add the
  87. // OID (9 bytes) and its length (2 bytes) to get the position of the DigestInfo sequence,
  88. // which is expected to have a length of 0x31 when the NULL param is present or 0x2f if not.
  89. if (bytes1(_unsafeReadBytes32(buffer, length - 50)) == 0x31) {
  90. offset = 0x34;
  91. // 00 (1 byte) | SEQUENCE length (0x31) = 3031 (2 bytes) | SEQUENCE length (0x0d) = 300d (2 bytes) | OBJECT_IDENTIFIER length (0x09) = 0609 (2 bytes)
  92. // SHA256 OID = 608648016503040201 (9 bytes) | NULL = 0500 (2 bytes) (explicit) | OCTET_STRING length (0x20) = 0420 (2 bytes)
  93. params = 0x003031300d060960864801650304020105000420000000000000000000000000;
  94. mask = 0xffffffffffffffffffffffffffffffffffffffff000000000000000000000000; // (20 bytes)
  95. } else if (bytes1(_unsafeReadBytes32(buffer, length - 48)) == 0x2F) {
  96. offset = 0x32;
  97. // 00 (1 byte) | SEQUENCE length (0x2f) = 302f (2 bytes) | SEQUENCE length (0x0b) = 300b (2 bytes) | OBJECT_IDENTIFIER length (0x09) = 0609 (2 bytes)
  98. // SHA256 OID = 608648016503040201 (9 bytes) | NULL = <implicit> | OCTET_STRING length (0x20) = 0420 (2 bytes)
  99. params = 0x00302f300b060960864801650304020104200000000000000000000000000000;
  100. mask = 0xffffffffffffffffffffffffffffffffffff0000000000000000000000000000; // (18 bytes)
  101. } else {
  102. // unknown
  103. return false;
  104. }
  105. // Length is at least 0x40 and offset is at most 0x34, so this is safe. There is always some padding.
  106. uint256 paddingEnd = length - offset;
  107. // The padding has variable (arbitrary) length, so we check it byte per byte in a loop.
  108. // This is required to ensure non-malleability. Not checking would allow an attacker to
  109. // use the padding to manipulate the message in order to create a valid signature out of
  110. // multiple valid signatures.
  111. for (uint256 i = 2; i < paddingEnd; ++i) {
  112. if (bytes1(_unsafeReadBytes32(buffer, i)) != 0xFF) {
  113. return false;
  114. }
  115. }
  116. // All the other parameters are small enough to fit in a bytes32, so we can check them directly.
  117. return
  118. bytes2(0x0001) == bytes2(_unsafeReadBytes32(buffer, 0x00)) && // 00 | 01
  119. // PS was checked in the loop
  120. params == _unsafeReadBytes32(buffer, paddingEnd) & mask && // DigestInfo
  121. // Optional parameters are not checked
  122. digest == _unsafeReadBytes32(buffer, length - 0x20); // Digest
  123. }
  124. }
  125. /// @dev Reads a bytes32 from a bytes array without bounds checking.
  126. function _unsafeReadBytes32(bytes memory array, uint256 offset) private pure returns (bytes32 result) {
  127. // Memory safeness is guaranteed as long as the provided `array` is a Solidity-allocated bytes array
  128. // and `offset` is within bounds. This is the case for all calls to this private function from {pkcs1}.
  129. assembly ("memory-safe") {
  130. result := mload(add(add(array, 0x20), offset))
  131. }
  132. }
  133. }