ECDSA.sol 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. // SPDX-License-Identifier: MIT
  2. pragma solidity ^0.8.0;
  3. /**
  4. * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
  5. *
  6. * These functions can be used to verify that a message was signed by the holder
  7. * of the private keys of a given address.
  8. */
  9. library ECDSA {
  10. /**
  11. * @dev Returns the address that signed a hashed message (`hash`) with
  12. * `signature`. This address can then be used for verification purposes.
  13. *
  14. * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
  15. * this function rejects them by requiring the `s` value to be in the lower
  16. * half order, and the `v` value to be either 27 or 28.
  17. *
  18. * IMPORTANT: `hash` _must_ be the result of a hash operation for the
  19. * verification to be secure: it is possible to craft signatures that
  20. * recover to arbitrary addresses for non-hashed data. A safe way to ensure
  21. * this is by receiving a hash of the original message (which may otherwise
  22. * be too long), and then calling {toEthSignedMessageHash} on it.
  23. *
  24. * Documentation for signature generation:
  25. * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
  26. * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
  27. */
  28. function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
  29. // Divide the signature in r, s and v variables
  30. bytes32 r;
  31. bytes32 s;
  32. uint8 v;
  33. // Check the signature length
  34. // - case 65: r,s,v signature (standard)
  35. // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
  36. if (signature.length == 65) {
  37. // ecrecover takes the signature parameters, and the only way to get them
  38. // currently is to use assembly.
  39. // solhint-disable-next-line no-inline-assembly
  40. assembly {
  41. r := mload(add(signature, 0x20))
  42. s := mload(add(signature, 0x40))
  43. v := byte(0, mload(add(signature, 0x60)))
  44. }
  45. } else if (signature.length == 64) {
  46. // ecrecover takes the signature parameters, and the only way to get them
  47. // currently is to use assembly.
  48. // solhint-disable-next-line no-inline-assembly
  49. assembly {
  50. let vs := mload(add(signature, 0x40))
  51. r := mload(add(signature, 0x20))
  52. s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
  53. v := add(shr(255, vs), 27)
  54. }
  55. } else {
  56. revert("ECDSA: invalid signature length");
  57. }
  58. return recover(hash, v, r, s);
  59. }
  60. /**
  61. * @dev Overload of {ECDSA-recover} that receives the `v`,
  62. * `r` and `s` signature fields separately.
  63. */
  64. function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
  65. // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
  66. // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
  67. // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most
  68. // signatures from current libraries generate a unique signature with an s-value in the lower half order.
  69. //
  70. // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
  71. // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
  72. // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
  73. // these malleable signatures as well.
  74. require(uint256(s) <= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0, "ECDSA: invalid signature 's' value");
  75. require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value");
  76. // If the signature is valid (and not malleable), return the signer address
  77. address signer = ecrecover(hash, v, r, s);
  78. require(signer != address(0), "ECDSA: invalid signature");
  79. return signer;
  80. }
  81. /**
  82. * @dev Returns an Ethereum Signed Message, created from a `hash`. This
  83. * produces hash corresponding to the one signed with the
  84. * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
  85. * JSON-RPC method as part of EIP-191.
  86. *
  87. * See {recover}.
  88. */
  89. function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
  90. // 32 is the length in bytes of hash,
  91. // enforced by the type signature above
  92. return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
  93. }
  94. /**
  95. * @dev Returns an Ethereum Signed Typed Data, created from a
  96. * `domainSeparator` and a `structHash`. This produces hash corresponding
  97. * to the one signed with the
  98. * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
  99. * JSON-RPC method as part of EIP-712.
  100. *
  101. * See {recover}.
  102. */
  103. function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
  104. return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
  105. }
  106. }