// SPDX-License-Identifier: MIT pragma solidity ^0.8.26; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {Bytes} from "./Bytes.sol"; import {Calldata} from "./Calldata.sol"; /** * @dev Helper library to format and parse https://ethereum-magicians.org/t/erc-7930-interoperable-addresses/23365[ERC-7930] interoperable * addresses. */ library InteroperableAddress { using SafeCast for uint256; using Bytes for bytes; error InteroperableAddressParsingError(bytes); error InteroperableAddressEmptyReferenceAndAddress(); /** * @dev Format an ERC-7930 interoperable address (version 1) from its components `chainType`, `chainReference` * and `addr`. This is a generic function that supports any chain type, chain reference and address supported by * ERC-7390, including interoperable addresses with empty chain reference or empty address. */ function formatV1( bytes2 chainType, bytes memory chainReference, bytes memory addr ) internal pure returns (bytes memory) { require(chainReference.length > 0 || addr.length > 0, InteroperableAddressEmptyReferenceAndAddress()); return abi.encodePacked( bytes2(0x0001), chainType, chainReference.length.toUint8(), chainReference, addr.length.toUint8(), addr ); } /** * @dev Variant of {formatV1-bytes2-bytes-bytes-} specific to EVM chains. Returns the ERC-7930 interoperable * address (version 1) for a given chainid and ethereum address. */ function formatEvmV1(uint256 chainid, address addr) internal pure returns (bytes memory) { bytes memory chainReference = _toChainReference(chainid); return abi.encodePacked(bytes4(0x00010000), uint8(chainReference.length), chainReference, uint8(20), addr); } /** * @dev Variant of {formatV1-bytes2-bytes-bytes-} that specifies an EVM chain without an address. */ function formatEvmV1(uint256 chainid) internal pure returns (bytes memory) { bytes memory chainReference = _toChainReference(chainid); return abi.encodePacked(bytes4(0x00010000), uint8(chainReference.length), chainReference, uint8(0)); } /** * @dev Variant of {formatV1-bytes2-bytes-bytes-} that specifies an EVM address without a chain reference. */ function formatEvmV1(address addr) internal pure returns (bytes memory) { return abi.encodePacked(bytes6(0x000100000014), addr); } /** * @dev Parse a ERC-7930 interoperable address (version 1) into its different components. Reverts if the input is * not following a version 1 of ERC-7930 */ function parseV1( bytes memory self ) internal pure returns (bytes2 chainType, bytes memory chainReference, bytes memory addr) { bool success; (success, chainType, chainReference, addr) = tryParseV1(self); require(success, InteroperableAddressParsingError(self)); } /** * @dev Variant of {parseV1} that handles calldata slices to reduce memory copy costs. */ function parseV1Calldata( bytes calldata self ) internal pure returns (bytes2 chainType, bytes calldata chainReference, bytes calldata addr) { bool success; (success, chainType, chainReference, addr) = tryParseV1Calldata(self); require(success, InteroperableAddressParsingError(self)); } /** * @dev Variant of {parseV1} that does not revert on invalid input. Instead, it returns `false` as the first * return value to indicate parsing failure when the input does not follow version 1 of ERC-7930. */ function tryParseV1( bytes memory self ) internal pure returns (bool success, bytes2 chainType, bytes memory chainReference, bytes memory addr) { unchecked { success = true; if (self.length < 0x06) return (false, 0x0000, _emptyBytesMemory(), _emptyBytesMemory()); bytes2 version = _readBytes2(self, 0x00); if (version != bytes2(0x0001)) return (false, 0x0000, _emptyBytesMemory(), _emptyBytesMemory()); chainType = _readBytes2(self, 0x02); uint8 chainReferenceLength = uint8(self[0x04]); if (self.length < 0x06 + chainReferenceLength) return (false, 0x0000, _emptyBytesMemory(), _emptyBytesMemory()); chainReference = self.slice(0x05, 0x05 + chainReferenceLength); uint8 addrLength = uint8(self[0x05 + chainReferenceLength]); if (self.length < 0x06 + chainReferenceLength + addrLength) return (false, 0x0000, _emptyBytesMemory(), _emptyBytesMemory()); addr = self.slice(0x06 + chainReferenceLength, 0x06 + chainReferenceLength + addrLength); } } /** * @dev Variant of {tryParseV1} that handles calldata slices to reduce memory copy costs. */ function tryParseV1Calldata( bytes calldata self ) internal pure returns (bool success, bytes2 chainType, bytes calldata chainReference, bytes calldata addr) { unchecked { success = true; if (self.length < 0x06) return (false, 0x0000, Calldata.emptyBytes(), Calldata.emptyBytes()); bytes2 version = _readBytes2Calldata(self, 0x00); if (version != bytes2(0x0001)) return (false, 0x0000, Calldata.emptyBytes(), Calldata.emptyBytes()); chainType = _readBytes2Calldata(self, 0x02); uint8 chainReferenceLength = uint8(self[0x04]); if (self.length < 0x06 + chainReferenceLength) return (false, 0x0000, Calldata.emptyBytes(), Calldata.emptyBytes()); chainReference = self[0x05:0x05 + chainReferenceLength]; uint8 addrLength = uint8(self[0x05 + chainReferenceLength]); if (self.length < 0x06 + chainReferenceLength + addrLength) return (false, 0x0000, Calldata.emptyBytes(), Calldata.emptyBytes()); addr = self[0x06 + chainReferenceLength:0x06 + chainReferenceLength + addrLength]; } } /** * @dev Parse a ERC-7930 interoperable address (version 1) corresponding to an EIP-155 chain. The `chainId` and * `addr` return values will be zero if the input doesn't include a chainReference or an address, respectively. * * Requirements: * * * The input must be a valid ERC-7930 interoperable address (version 1) * * The underlying chainType must be "eip-155" */ function parseEvmV1(bytes memory self) internal pure returns (uint256 chainId, address addr) { bool success; (success, chainId, addr) = tryParseEvmV1(self); require(success, InteroperableAddressParsingError(self)); } /** * @dev Variant of {parseEvmV1} that handles calldata slices to reduce memory copy costs. */ function parseEvmV1Calldata(bytes calldata self) internal pure returns (uint256 chainId, address addr) { bool success; (success, chainId, addr) = tryParseEvmV1Calldata(self); require(success, InteroperableAddressParsingError(self)); } /** * @dev Variant of {parseEvmV1} that does not revert on invalid input. Instead, it returns `false` as the first * return value to indicate parsing failure when the input does not follow version 1 of ERC-7930. */ function tryParseEvmV1(bytes memory self) internal pure returns (bool success, uint256 chainId, address addr) { (bool success_, bytes2 chainType_, bytes memory chainReference_, bytes memory addr_) = tryParseV1(self); return (success_ && chainType_ == 0x0000 && chainReference_.length < 33 && (addr_.length == 0 || addr_.length == 20)) ? ( true, uint256(bytes32(chainReference_)) >> (256 - 8 * chainReference_.length), address(bytes20(addr_)) ) : (false, 0, address(0)); } /** * @dev Variant of {tryParseEvmV1} that handles calldata slices to reduce memory copy costs. */ function tryParseEvmV1Calldata( bytes calldata self ) internal pure returns (bool success, uint256 chainId, address addr) { (bool success_, bytes2 chainType_, bytes calldata chainReference_, bytes calldata addr_) = tryParseV1Calldata( self ); return (success_ && chainType_ == 0x0000 && chainReference_.length < 33 && (addr_.length == 0 || addr_.length == 20)) ? ( true, uint256(bytes32(chainReference_)) >> (256 - 8 * chainReference_.length), address(bytes20(addr_)) ) : (false, 0, address(0)); } function _toChainReference(uint256 chainid) private pure returns (bytes memory) { unchecked { // length fits in a uint8: log256(type(uint256).max) is 31 uint256 length = Math.log256(chainid) + 1; return abi.encodePacked(chainid).slice(32 - length); } } function _readBytes2(bytes memory buffer, uint256 offset) private pure returns (bytes2 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := shl(240, shr(240, mload(add(add(buffer, 0x20), offset)))) } } function _readBytes2Calldata(bytes calldata buffer, uint256 offset) private pure returns (bytes2 value) { assembly ("memory-safe") { value := shl(240, shr(240, calldataload(add(buffer.offset, offset)))) } } function _emptyBytesMemory() private pure returns (bytes memory result) { assembly ("memory-safe") { result := 0x60 // mload(0x60) is always 0 } } }