|
@@ -145,10 +145,9 @@ library P256 {
|
|
|
*/
|
|
|
function isValidPublicKey(bytes32 x, bytes32 y) internal pure returns (bool result) {
|
|
|
assembly ("memory-safe") {
|
|
|
- let p := P
|
|
|
- let lhs := mulmod(y, y, p) // y^2
|
|
|
- let rhs := addmod(mulmod(addmod(mulmod(x, x, p), A, p), x, p), B, p) // ((x^2 + a) * x) + b = x^3 + ax + b
|
|
|
- result := and(and(lt(x, p), lt(y, p)), eq(lhs, rhs)) // Should conform with the Weierstrass equation
|
|
|
+ let lhs := mulmod(y, y, P) // y^2
|
|
|
+ let rhs := addmod(mulmod(addmod(mulmod(x, x, P), A, P), x, P), B, P) // ((x^2 + a) * x) + b = x^3 + ax + b
|
|
|
+ result := and(and(lt(x, P), lt(y, P)), eq(lhs, rhs)) // Should conform with the Weierstrass equation
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -188,30 +187,29 @@ library P256 {
|
|
|
uint256 z2
|
|
|
) private pure returns (uint256 rx, uint256 ry, uint256 rz) {
|
|
|
assembly ("memory-safe") {
|
|
|
- let p := P
|
|
|
let z1 := mload(add(p1, 0x40))
|
|
|
- let s1 := mulmod(mload(add(p1, 0x20)), mulmod(mulmod(z2, z2, p), z2, p), p) // s1 = y1*z2³
|
|
|
- let s2 := mulmod(y2, mulmod(mulmod(z1, z1, p), z1, p), p) // s2 = y2*z1³
|
|
|
- let r := addmod(s2, sub(p, s1), p) // r = s2-s1
|
|
|
- let u1 := mulmod(mload(p1), mulmod(z2, z2, p), p) // u1 = x1*z2²
|
|
|
- let u2 := mulmod(x2, mulmod(z1, z1, p), p) // u2 = x2*z1²
|
|
|
- let h := addmod(u2, sub(p, u1), p) // h = u2-u1
|
|
|
- let hh := mulmod(h, h, p) // h²
|
|
|
+ let s1 := mulmod(mload(add(p1, 0x20)), mulmod(mulmod(z2, z2, P), z2, P), P) // s1 = y1*z2³
|
|
|
+ let s2 := mulmod(y2, mulmod(mulmod(z1, z1, P), z1, P), P) // s2 = y2*z1³
|
|
|
+ let r := addmod(s2, sub(P, s1), P) // r = s2-s1
|
|
|
+ let u1 := mulmod(mload(p1), mulmod(z2, z2, P), P) // u1 = x1*z2²
|
|
|
+ let u2 := mulmod(x2, mulmod(z1, z1, P), P) // u2 = x2*z1²
|
|
|
+ let h := addmod(u2, sub(P, u1), P) // h = u2-u1
|
|
|
+ let hh := mulmod(h, h, P) // h²
|
|
|
|
|
|
// x' = r²-h³-2*u1*h²
|
|
|
rx := addmod(
|
|
|
- addmod(mulmod(r, r, p), sub(p, mulmod(h, hh, p)), p),
|
|
|
- sub(p, mulmod(2, mulmod(u1, hh, p), p)),
|
|
|
- p
|
|
|
+ addmod(mulmod(r, r, P), sub(P, mulmod(h, hh, P)), P),
|
|
|
+ sub(P, mulmod(2, mulmod(u1, hh, P), P)),
|
|
|
+ P
|
|
|
)
|
|
|
// y' = r*(u1*h²-x')-s1*h³
|
|
|
ry := addmod(
|
|
|
- mulmod(r, addmod(mulmod(u1, hh, p), sub(p, rx), p), p),
|
|
|
- sub(p, mulmod(s1, mulmod(h, hh, p), p)),
|
|
|
- p
|
|
|
+ mulmod(r, addmod(mulmod(u1, hh, P), sub(P, rx), P), P),
|
|
|
+ sub(P, mulmod(s1, mulmod(h, hh, P), P)),
|
|
|
+ P
|
|
|
)
|
|
|
// z' = h*z1*z2
|
|
|
- rz := mulmod(h, mulmod(z1, z2, p), p)
|
|
|
+ rz := mulmod(h, mulmod(z1, z2, P), P)
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -221,19 +219,18 @@ library P256 {
|
|
|
*/
|
|
|
function _jDouble(uint256 x, uint256 y, uint256 z) private pure returns (uint256 rx, uint256 ry, uint256 rz) {
|
|
|
assembly ("memory-safe") {
|
|
|
- let p := P
|
|
|
- let yy := mulmod(y, y, p)
|
|
|
- let zz := mulmod(z, z, p)
|
|
|
- let s := mulmod(4, mulmod(x, yy, p), p) // s = 4*x*y²
|
|
|
- let m := addmod(mulmod(3, mulmod(x, x, p), p), mulmod(A, mulmod(zz, zz, p), p), p) // m = 3*x²+a*z⁴
|
|
|
- let t := addmod(mulmod(m, m, p), sub(p, mulmod(2, s, p)), p) // t = m²-2*s
|
|
|
+ let yy := mulmod(y, y, P)
|
|
|
+ let zz := mulmod(z, z, P)
|
|
|
+ let s := mulmod(4, mulmod(x, yy, P), P) // s = 4*x*y²
|
|
|
+ let m := addmod(mulmod(3, mulmod(x, x, P), P), mulmod(A, mulmod(zz, zz, P), P), P) // m = 3*x²+a*z⁴
|
|
|
+ let t := addmod(mulmod(m, m, P), sub(P, mulmod(2, s, P)), P) // t = m²-2*s
|
|
|
|
|
|
// x' = t
|
|
|
rx := t
|
|
|
// y' = m*(s-t)-8*y⁴
|
|
|
- ry := addmod(mulmod(m, addmod(s, sub(p, t), p), p), sub(p, mulmod(8, mulmod(yy, yy, p), p)), p)
|
|
|
+ ry := addmod(mulmod(m, addmod(s, sub(P, t), P), P), sub(P, mulmod(8, mulmod(yy, yy, P), P)), P)
|
|
|
// z' = 2*y*z
|
|
|
- rz := mulmod(2, mulmod(y, z, p), p)
|
|
|
+ rz := mulmod(2, mulmod(y, z, P), P)
|
|
|
}
|
|
|
}
|
|
|
|