|
@@ -0,0 +1,386 @@
|
|
|
+const format = require('../format-lines');
|
|
|
+const { capitalize } = require('../../helpers');
|
|
|
+const { TYPES } = require('./Arrays.opts');
|
|
|
+
|
|
|
+const header = `\
|
|
|
+pragma solidity ^0.8.20;
|
|
|
+
|
|
|
+import {StorageSlot} from "./StorageSlot.sol";
|
|
|
+import {Math} from "./math/Math.sol";
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Collection of functions related to array types.
|
|
|
+ */
|
|
|
+`;
|
|
|
+
|
|
|
+const sort = type => `\
|
|
|
+ /**
|
|
|
+ * @dev Sort an array of ${type} (in memory) following the provided comparator function.
|
|
|
+ *
|
|
|
+ * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
|
|
|
+ * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
|
|
|
+ *
|
|
|
+ * NOTE: this function's cost is \`O(n · log(n))\` in average and \`O(n²)\` in the worst case, with n the length of the
|
|
|
+ * array. Using it in view functions that are executed through \`eth_call\` is safe, but one should be very careful
|
|
|
+ * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
|
|
|
+ * consume more gas than is available in a block, leading to potential DoS.
|
|
|
+ */
|
|
|
+ function sort(
|
|
|
+ ${type}[] memory array,
|
|
|
+ function(${type}, ${type}) pure returns (bool) comp
|
|
|
+ ) internal pure returns (${type}[] memory) {
|
|
|
+ ${
|
|
|
+ type === 'bytes32'
|
|
|
+ ? '_quickSort(_begin(array), _end(array), comp);'
|
|
|
+ : 'sort(_castToBytes32Array(array), _castToBytes32Comp(comp));'
|
|
|
+ }
|
|
|
+ return array;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Variant of {sort} that sorts an array of ${type} in increasing order.
|
|
|
+ */
|
|
|
+ function sort(${type}[] memory array) internal pure returns (${type}[] memory) {
|
|
|
+ ${type === 'bytes32' ? 'sort(array, _defaultComp);' : 'sort(_castToBytes32Array(array), _defaultComp);'}
|
|
|
+ return array;
|
|
|
+ }
|
|
|
+`;
|
|
|
+
|
|
|
+const quickSort = `
|
|
|
+/**
|
|
|
+ * @dev Performs a quick sort of a segment of memory. The segment sorted starts at \`begin\` (inclusive), and stops
|
|
|
+ * at end (exclusive). Sorting follows the \`comp\` comparator.
|
|
|
+ *
|
|
|
+ * Invariant: \`begin <= end\`. This is the case when initially called by {sort} and is preserved in subcalls.
|
|
|
+ *
|
|
|
+ * IMPORTANT: Memory locations between \`begin\` and \`end\` are not validated/zeroed. This function should
|
|
|
+ * be used only if the limits are within a memory array.
|
|
|
+ */
|
|
|
+function _quickSort(uint256 begin, uint256 end, function(bytes32, bytes32) pure returns (bool) comp) private pure {
|
|
|
+ unchecked {
|
|
|
+ if (end - begin < 0x40) return;
|
|
|
+
|
|
|
+ // Use first element as pivot
|
|
|
+ bytes32 pivot = _mload(begin);
|
|
|
+ // Position where the pivot should be at the end of the loop
|
|
|
+ uint256 pos = begin;
|
|
|
+
|
|
|
+ for (uint256 it = begin + 0x20; it < end; it += 0x20) {
|
|
|
+ if (comp(_mload(it), pivot)) {
|
|
|
+ // If the value stored at the iterator's position comes before the pivot, we increment the
|
|
|
+ // position of the pivot and move the value there.
|
|
|
+ pos += 0x20;
|
|
|
+ _swap(pos, it);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ _swap(begin, pos); // Swap pivot into place
|
|
|
+ _quickSort(begin, pos, comp); // Sort the left side of the pivot
|
|
|
+ _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Pointer to the memory location of the first element of \`array\`.
|
|
|
+ */
|
|
|
+function _begin(bytes32[] memory array) private pure returns (uint256 ptr) {
|
|
|
+ /// @solidity memory-safe-assembly
|
|
|
+ assembly {
|
|
|
+ ptr := add(array, 0x20)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Pointer to the memory location of the first memory word (32bytes) after \`array\`. This is the memory word
|
|
|
+ * that comes just after the last element of the array.
|
|
|
+ */
|
|
|
+function _end(bytes32[] memory array) private pure returns (uint256 ptr) {
|
|
|
+ unchecked {
|
|
|
+ return _begin(array) + array.length * 0x20;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Load memory word (as a bytes32) at location \`ptr\`.
|
|
|
+ */
|
|
|
+function _mload(uint256 ptr) private pure returns (bytes32 value) {
|
|
|
+ assembly {
|
|
|
+ value := mload(ptr)
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Swaps the elements memory location \`ptr1\` and \`ptr2\`.
|
|
|
+ */
|
|
|
+function _swap(uint256 ptr1, uint256 ptr2) private pure {
|
|
|
+ assembly {
|
|
|
+ let value1 := mload(ptr1)
|
|
|
+ let value2 := mload(ptr2)
|
|
|
+ mstore(ptr1, value2)
|
|
|
+ mstore(ptr2, value1)
|
|
|
+ }
|
|
|
+}
|
|
|
+`;
|
|
|
+
|
|
|
+const defaultComparator = `
|
|
|
+ /// @dev Comparator for sorting arrays in increasing order.
|
|
|
+ function _defaultComp(bytes32 a, bytes32 b) private pure returns (bool) {
|
|
|
+ return a < b;
|
|
|
+ }
|
|
|
+`;
|
|
|
+
|
|
|
+const castArray = type => `\
|
|
|
+ /// @dev Helper: low level cast ${type} memory array to uint256 memory array
|
|
|
+ function _castToBytes32Array(${type}[] memory input) private pure returns (bytes32[] memory output) {
|
|
|
+ assembly {
|
|
|
+ output := input
|
|
|
+ }
|
|
|
+ }
|
|
|
+`;
|
|
|
+
|
|
|
+const castComparator = type => `\
|
|
|
+ /// @dev Helper: low level cast ${type} comp function to bytes32 comp function
|
|
|
+ function _castToBytes32Comp(
|
|
|
+ function(${type}, ${type}) pure returns (bool) input
|
|
|
+ ) private pure returns (function(bytes32, bytes32) pure returns (bool) output) {
|
|
|
+ assembly {
|
|
|
+ output := input
|
|
|
+ }
|
|
|
+ }
|
|
|
+`;
|
|
|
+
|
|
|
+const search = `
|
|
|
+/**
|
|
|
+ * @dev Searches a sorted \`array\` and returns the first index that contains
|
|
|
+ * a value greater or equal to \`element\`. If no such index exists (i.e. all
|
|
|
+ * values in the array are strictly less than \`element\`), the array length is
|
|
|
+ * returned. Time complexity O(log n).
|
|
|
+ *
|
|
|
+ * NOTE: The \`array\` is expected to be sorted in ascending order, and to
|
|
|
+ * contain no repeated elements.
|
|
|
+ *
|
|
|
+ * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
|
|
|
+ * support for repeated elements in the array. The {lowerBound} function should
|
|
|
+ * be used instead.
|
|
|
+ */
|
|
|
+function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
|
|
|
+ uint256 low = 0;
|
|
|
+ uint256 high = array.length;
|
|
|
+
|
|
|
+ if (high == 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (low < high) {
|
|
|
+ uint256 mid = Math.average(low, high);
|
|
|
+
|
|
|
+ // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
|
+ // because Math.average rounds towards zero (it does integer division with truncation).
|
|
|
+ if (unsafeAccess(array, mid).value > element) {
|
|
|
+ high = mid;
|
|
|
+ } else {
|
|
|
+ low = mid + 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // At this point \`low\` is the exclusive upper bound. We will return the inclusive upper bound.
|
|
|
+ if (low > 0 && unsafeAccess(array, low - 1).value == element) {
|
|
|
+ return low - 1;
|
|
|
+ } else {
|
|
|
+ return low;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Searches an \`array\` sorted in ascending order and returns the first
|
|
|
+ * index that contains a value greater or equal than \`element\`. If no such index
|
|
|
+ * exists (i.e. all values in the array are strictly less than \`element\`), the array
|
|
|
+ * length is returned. Time complexity O(log n).
|
|
|
+ *
|
|
|
+ * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
|
|
|
+ */
|
|
|
+function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
|
|
|
+ uint256 low = 0;
|
|
|
+ uint256 high = array.length;
|
|
|
+
|
|
|
+ if (high == 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (low < high) {
|
|
|
+ uint256 mid = Math.average(low, high);
|
|
|
+
|
|
|
+ // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
|
+ // because Math.average rounds towards zero (it does integer division with truncation).
|
|
|
+ if (unsafeAccess(array, mid).value < element) {
|
|
|
+ // this cannot overflow because mid < high
|
|
|
+ unchecked {
|
|
|
+ low = mid + 1;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ high = mid;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return low;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Searches an \`array\` sorted in ascending order and returns the first
|
|
|
+ * index that contains a value strictly greater than \`element\`. If no such index
|
|
|
+ * exists (i.e. all values in the array are strictly less than \`element\`), the array
|
|
|
+ * length is returned. Time complexity O(log n).
|
|
|
+ *
|
|
|
+ * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
|
|
|
+ */
|
|
|
+function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
|
|
|
+ uint256 low = 0;
|
|
|
+ uint256 high = array.length;
|
|
|
+
|
|
|
+ if (high == 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (low < high) {
|
|
|
+ uint256 mid = Math.average(low, high);
|
|
|
+
|
|
|
+ // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
|
+ // because Math.average rounds towards zero (it does integer division with truncation).
|
|
|
+ if (unsafeAccess(array, mid).value > element) {
|
|
|
+ high = mid;
|
|
|
+ } else {
|
|
|
+ // this cannot overflow because mid < high
|
|
|
+ unchecked {
|
|
|
+ low = mid + 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return low;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Same as {lowerBound}, but with an array in memory.
|
|
|
+ */
|
|
|
+function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
|
|
|
+ uint256 low = 0;
|
|
|
+ uint256 high = array.length;
|
|
|
+
|
|
|
+ if (high == 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (low < high) {
|
|
|
+ uint256 mid = Math.average(low, high);
|
|
|
+
|
|
|
+ // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
|
+ // because Math.average rounds towards zero (it does integer division with truncation).
|
|
|
+ if (unsafeMemoryAccess(array, mid) < element) {
|
|
|
+ // this cannot overflow because mid < high
|
|
|
+ unchecked {
|
|
|
+ low = mid + 1;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ high = mid;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return low;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Same as {upperBound}, but with an array in memory.
|
|
|
+ */
|
|
|
+function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
|
|
|
+ uint256 low = 0;
|
|
|
+ uint256 high = array.length;
|
|
|
+
|
|
|
+ if (high == 0) {
|
|
|
+ return 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ while (low < high) {
|
|
|
+ uint256 mid = Math.average(low, high);
|
|
|
+
|
|
|
+ // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
|
|
|
+ // because Math.average rounds towards zero (it does integer division with truncation).
|
|
|
+ if (unsafeMemoryAccess(array, mid) > element) {
|
|
|
+ high = mid;
|
|
|
+ } else {
|
|
|
+ // this cannot overflow because mid < high
|
|
|
+ unchecked {
|
|
|
+ low = mid + 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ return low;
|
|
|
+}
|
|
|
+`;
|
|
|
+
|
|
|
+const unsafeAccessStorage = type => `
|
|
|
+/**
|
|
|
+* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
|
|
|
+*
|
|
|
+* WARNING: Only use if you are certain \`pos\` is lower than the array length.
|
|
|
+*/
|
|
|
+function unsafeAccess(${type}[] storage arr, uint256 pos) internal pure returns (StorageSlot.${capitalize(
|
|
|
+ type,
|
|
|
+)}Slot storage) {
|
|
|
+ bytes32 slot;
|
|
|
+ // We use assembly to calculate the storage slot of the element at index \`pos\` of the dynamic array \`arr\`
|
|
|
+ // following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.
|
|
|
+
|
|
|
+ /// @solidity memory-safe-assembly
|
|
|
+ assembly {
|
|
|
+ mstore(0, arr.slot)
|
|
|
+ slot := add(keccak256(0, 0x20), pos)
|
|
|
+ }
|
|
|
+ return slot.get${capitalize(type)}Slot();
|
|
|
+}`;
|
|
|
+
|
|
|
+const unsafeAccessMemory = type => `
|
|
|
+/**
|
|
|
+ * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
|
|
|
+ *
|
|
|
+ * WARNING: Only use if you are certain \`pos\` is lower than the array length.
|
|
|
+ */
|
|
|
+function unsafeMemoryAccess(${type}[] memory arr, uint256 pos) internal pure returns (${type} res) {
|
|
|
+ assembly {
|
|
|
+ res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
|
|
|
+ }
|
|
|
+}
|
|
|
+`;
|
|
|
+
|
|
|
+const unsafeSetLength = type => `
|
|
|
+/**
|
|
|
+ * @dev Helper to set the length of an dynamic array. Directly writing to \`.length\` is forbidden.
|
|
|
+ *
|
|
|
+ * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
|
|
|
+ */
|
|
|
+function unsafeSetLength(${type}[] storage array, uint256 len) internal {
|
|
|
+ assembly {
|
|
|
+ sstore(array.slot, len)
|
|
|
+ }
|
|
|
+}`;
|
|
|
+
|
|
|
+// GENERATE
|
|
|
+module.exports = format(
|
|
|
+ header.trimEnd(),
|
|
|
+ 'library Arrays {',
|
|
|
+ 'using StorageSlot for bytes32;',
|
|
|
+ // sorting, comparator, helpers and internal
|
|
|
+ sort('bytes32'),
|
|
|
+ TYPES.filter(type => type !== 'bytes32').map(sort),
|
|
|
+ quickSort,
|
|
|
+ defaultComparator,
|
|
|
+ TYPES.filter(type => type !== 'bytes32').map(castArray),
|
|
|
+ TYPES.filter(type => type !== 'bytes32').map(castComparator),
|
|
|
+ // lookup
|
|
|
+ search,
|
|
|
+ // unsafe (direct) storage and memory access
|
|
|
+ TYPES.map(unsafeAccessStorage),
|
|
|
+ TYPES.map(unsafeAccessMemory),
|
|
|
+ TYPES.map(unsafeSetLength),
|
|
|
+ '}',
|
|
|
+);
|