|
@@ -124,11 +124,10 @@ library Math {
|
|
|
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
|
|
|
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
|
|
|
// variables such that product = prod1 * 2^256 + prod0.
|
|
|
- uint256 prod0; // Least significant 256 bits of the product
|
|
|
+ uint256 prod0 = x * y; // Least significant 256 bits of the product
|
|
|
uint256 prod1; // Most significant 256 bits of the product
|
|
|
assembly {
|
|
|
let mm := mulmod(x, y, not(0))
|
|
|
- prod0 := mul(x, y)
|
|
|
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
|
|
|
}
|
|
|
|
|
@@ -163,8 +162,7 @@ library Math {
|
|
|
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
|
|
|
// See https://cs.stackexchange.com/q/138556/92363.
|
|
|
|
|
|
- // Does not overflow because the denominator cannot be zero at this stage in the function.
|
|
|
- uint256 twos = denominator & (~denominator + 1);
|
|
|
+ uint256 twos = denominator & (0 - denominator);
|
|
|
assembly {
|
|
|
// Divide denominator by twos.
|
|
|
denominator := div(denominator, twos)
|