|
@@ -0,0 +1,578 @@
|
|
|
+// SPDX-License-Identifier: MIT
|
|
|
+// This file was procedurally generated from scripts/generate/templates/Heap.js.
|
|
|
+
|
|
|
+pragma solidity ^0.8.20;
|
|
|
+
|
|
|
+import {Math} from "../math/Math.sol";
|
|
|
+import {SafeCast} from "../math/SafeCast.sol";
|
|
|
+import {Comparators} from "../Comparators.sol";
|
|
|
+import {Panic} from "../Panic.sol";
|
|
|
+
|
|
|
+/**
|
|
|
+ * @dev Library for managing https://en.wikipedia.org/wiki/Binary_heap[binary heap] that can be used as
|
|
|
+ * https://en.wikipedia.org/wiki/Priority_queue[priority queue].
|
|
|
+ *
|
|
|
+ * Heaps are represented as an array of Node objects. This array stores two overlapping structures:
|
|
|
+ * * A tree structure where the first element (index 0) is the root, and where the node at index i is the child of the
|
|
|
+ * node at index (i-1)/2 and the father of nodes at index 2*i+1 and 2*i+2. Each node stores the index (in the array)
|
|
|
+ * where the corresponding value is stored.
|
|
|
+ * * A list of payloads values where each index contains a value and a lookup index. The type of the value depends on
|
|
|
+ * the variant being used. The lookup is the index of the node (in the tree) that points to this value.
|
|
|
+ *
|
|
|
+ * Some invariants:
|
|
|
+ * ```
|
|
|
+ * i == heap.data[heap.data[i].index].lookup // for all indices i
|
|
|
+ * i == heap.data[heap.data[i].lookup].index // for all indices i
|
|
|
+ * ```
|
|
|
+ *
|
|
|
+ * The structure is ordered so that each node is bigger than its parent. An immediate consequence is that the
|
|
|
+ * highest priority value is the one at the root. This value can be lookup up in constant time (O(1)) at
|
|
|
+ * `heap.data[heap.data[0].index].value`
|
|
|
+ *
|
|
|
+ * The structure is designed to perform the following operations with the corresponding complexities:
|
|
|
+ *
|
|
|
+ * * peek (get the highest priority in set): O(1)
|
|
|
+ * * insert (insert a value in the set): 0(log(n))
|
|
|
+ * * pop (remove the highest priority value in set): O(log(n))
|
|
|
+ * * replace (replace the highest priority value in set with a new value): O(log(n))
|
|
|
+ * * length (get the number of elements in the set): O(1)
|
|
|
+ * * clear (remove all elements in the set): O(1)
|
|
|
+ */
|
|
|
+library Heap {
|
|
|
+ using Math for *;
|
|
|
+ using SafeCast for *;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Binary heap that support values of type uint256.
|
|
|
+ *
|
|
|
+ * Each element of that structures uses 2 storage slots.
|
|
|
+ */
|
|
|
+ struct Uint256Heap {
|
|
|
+ Uint256HeapNode[] data;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Internal node type for Uint256Heap. Stores a value of type uint256.
|
|
|
+ */
|
|
|
+ struct Uint256HeapNode {
|
|
|
+ uint256 value;
|
|
|
+ uint64 index; // position -> value
|
|
|
+ uint64 lookup; // value -> position
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Lookup the root element of the heap.
|
|
|
+ */
|
|
|
+ function peek(Uint256Heap storage self) internal view returns (uint256) {
|
|
|
+ // self.data[0] will `ARRAY_ACCESS_OUT_OF_BOUNDS` panic if heap is empty.
|
|
|
+ return _unsafeNodeAccess(self, self.data[0].index).value;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Remove (and return) the root element for the heap using the default comparator.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function pop(Uint256Heap storage self) internal returns (uint256) {
|
|
|
+ return pop(self, Comparators.lt);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Remove (and return) the root element for the heap using the provided comparator.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function pop(
|
|
|
+ Uint256Heap storage self,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) internal returns (uint256) {
|
|
|
+ unchecked {
|
|
|
+ uint64 size = length(self);
|
|
|
+ if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
|
|
|
+
|
|
|
+ uint64 last = size - 1;
|
|
|
+
|
|
|
+ // get root location (in the data array) and value
|
|
|
+ Uint256HeapNode storage rootNode = _unsafeNodeAccess(self, 0);
|
|
|
+ uint64 rootIdx = rootNode.index;
|
|
|
+ Uint256HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
|
|
|
+ Uint256HeapNode storage lastNode = _unsafeNodeAccess(self, last);
|
|
|
+ uint256 rootDataValue = rootData.value;
|
|
|
+
|
|
|
+ // if root is not the last element of the data array (that will get pop-ed), reorder the data array.
|
|
|
+ if (rootIdx != last) {
|
|
|
+ // get details about the value stored in the last element of the array (that will get pop-ed)
|
|
|
+ uint64 lastDataIdx = lastNode.lookup;
|
|
|
+ uint256 lastDataValue = lastNode.value;
|
|
|
+ // copy these values to the location of the root (that is safe, and that we no longer use)
|
|
|
+ rootData.value = lastDataValue;
|
|
|
+ rootData.lookup = lastDataIdx;
|
|
|
+ // update the tree node that used to point to that last element (value now located where the root was)
|
|
|
+ _unsafeNodeAccess(self, lastDataIdx).index = rootIdx;
|
|
|
+ }
|
|
|
+
|
|
|
+ // get last leaf location (in the data array) and value
|
|
|
+ uint64 lastIdx = lastNode.index;
|
|
|
+ uint256 lastValue = _unsafeNodeAccess(self, lastIdx).value;
|
|
|
+
|
|
|
+ // move the last leaf to the root, pop last leaf ...
|
|
|
+ rootNode.index = lastIdx;
|
|
|
+ _unsafeNodeAccess(self, lastIdx).lookup = 0;
|
|
|
+ self.data.pop();
|
|
|
+
|
|
|
+ // ... and heapify
|
|
|
+ _siftDown(self, last, 0, lastValue, comp);
|
|
|
+
|
|
|
+ // return root value
|
|
|
+ return rootDataValue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Insert a new element in the heap using the default comparator.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function insert(Uint256Heap storage self, uint256 value) internal {
|
|
|
+ insert(self, value, Comparators.lt);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Insert a new element in the heap using the provided comparator.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function insert(
|
|
|
+ Uint256Heap storage self,
|
|
|
+ uint256 value,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) internal {
|
|
|
+ uint64 size = length(self);
|
|
|
+ if (size == type(uint64).max) Panic.panic(Panic.RESOURCE_ERROR);
|
|
|
+
|
|
|
+ self.data.push(Uint256HeapNode({index: size, lookup: size, value: value}));
|
|
|
+ _siftUp(self, size, value, comp);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Return the root element for the heap, and replace it with a new value, using the default comparator.
|
|
|
+ * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function replace(Uint256Heap storage self, uint256 newValue) internal returns (uint256) {
|
|
|
+ return replace(self, newValue, Comparators.lt);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Return the root element for the heap, and replace it with a new value, using the provided comparator.
|
|
|
+ * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function replace(
|
|
|
+ Uint256Heap storage self,
|
|
|
+ uint256 newValue,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) internal returns (uint256) {
|
|
|
+ uint64 size = length(self);
|
|
|
+ if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
|
|
|
+
|
|
|
+ // position of the node that holds the data for the root
|
|
|
+ uint64 rootIdx = _unsafeNodeAccess(self, 0).index;
|
|
|
+ // storage pointer to the node that holds the data for the root
|
|
|
+ Uint256HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
|
|
|
+
|
|
|
+ // cache old value and replace it
|
|
|
+ uint256 oldValue = rootData.value;
|
|
|
+ rootData.value = newValue;
|
|
|
+
|
|
|
+ // re-heapify
|
|
|
+ _siftDown(self, size, 0, newValue, comp);
|
|
|
+
|
|
|
+ // return old root value
|
|
|
+ return oldValue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Returns the number of elements in the heap.
|
|
|
+ */
|
|
|
+ function length(Uint256Heap storage self) internal view returns (uint64) {
|
|
|
+ return self.data.length.toUint64();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Removes all elements in the heap.
|
|
|
+ */
|
|
|
+ function clear(Uint256Heap storage self) internal {
|
|
|
+ Uint256HeapNode[] storage data = self.data;
|
|
|
+ /// @solidity memory-safe-assembly
|
|
|
+ assembly {
|
|
|
+ sstore(data.slot, 0)
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * @dev Swap node `i` and `j` in the tree.
|
|
|
+ */
|
|
|
+ function _swap(Uint256Heap storage self, uint64 i, uint64 j) private {
|
|
|
+ Uint256HeapNode storage ni = _unsafeNodeAccess(self, i);
|
|
|
+ Uint256HeapNode storage nj = _unsafeNodeAccess(self, j);
|
|
|
+ uint64 ii = ni.index;
|
|
|
+ uint64 jj = nj.index;
|
|
|
+ // update pointers to the data (swap the value)
|
|
|
+ ni.index = jj;
|
|
|
+ nj.index = ii;
|
|
|
+ // update lookup pointers for consistency
|
|
|
+ _unsafeNodeAccess(self, ii).lookup = j;
|
|
|
+ _unsafeNodeAccess(self, jj).lookup = i;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
|
|
|
+ * comparator, and moving toward the leafs of the underlying tree.
|
|
|
+ *
|
|
|
+ * NOTE: This is a private function that is called in a trusted context with already cached parameters. `length`
|
|
|
+ * and `value` could be extracted from `self` and `pos`, but that would require redundant storage read. These
|
|
|
+ * parameters are not verified. It is the caller role to make sure the parameters are correct.
|
|
|
+ */
|
|
|
+ function _siftDown(
|
|
|
+ Uint256Heap storage self,
|
|
|
+ uint64 size,
|
|
|
+ uint64 pos,
|
|
|
+ uint256 value,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) private {
|
|
|
+ uint256 left = 2 * pos + 1; // this could overflow uint64
|
|
|
+ uint256 right = 2 * pos + 2; // this could overflow uint64
|
|
|
+
|
|
|
+ if (right < size) {
|
|
|
+ // the check guarantees that `left` and `right` are both valid uint32
|
|
|
+ uint64 lIndex = uint64(left);
|
|
|
+ uint64 rIndex = uint64(right);
|
|
|
+ uint256 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
|
|
|
+ uint256 rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value;
|
|
|
+ if (comp(lValue, value) || comp(rValue, value)) {
|
|
|
+ uint64 index = uint64(comp(lValue, rValue).ternary(lIndex, rIndex));
|
|
|
+ _swap(self, pos, index);
|
|
|
+ _siftDown(self, size, index, value, comp);
|
|
|
+ }
|
|
|
+ } else if (left < size) {
|
|
|
+ // the check guarantees that `left` is a valid uint32
|
|
|
+ uint64 lIndex = uint64(left);
|
|
|
+ uint256 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
|
|
|
+ if (comp(lValue, value)) {
|
|
|
+ _swap(self, pos, lIndex);
|
|
|
+ _siftDown(self, size, lIndex, value, comp);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
|
|
|
+ * comparator, and moving toward the root of the underlying tree.
|
|
|
+ *
|
|
|
+ * NOTE: This is a private function that is called in a trusted context with already cached parameters. `value`
|
|
|
+ * could be extracted from `self` and `pos`, but that would require redundant storage read. This parameters is not
|
|
|
+ * verified. It is the caller role to make sure the parameters are correct.
|
|
|
+ */
|
|
|
+ function _siftUp(
|
|
|
+ Uint256Heap storage self,
|
|
|
+ uint64 pos,
|
|
|
+ uint256 value,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) private {
|
|
|
+ unchecked {
|
|
|
+ while (pos > 0) {
|
|
|
+ uint64 parent = (pos - 1) / 2;
|
|
|
+ uint256 parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value;
|
|
|
+ if (comp(parentValue, value)) break;
|
|
|
+ _swap(self, pos, parent);
|
|
|
+ pos = parent;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ function _unsafeNodeAccess(
|
|
|
+ Uint256Heap storage self,
|
|
|
+ uint64 pos
|
|
|
+ ) private pure returns (Uint256HeapNode storage result) {
|
|
|
+ assembly ("memory-safe") {
|
|
|
+ mstore(0x00, self.slot)
|
|
|
+ result.slot := add(keccak256(0x00, 0x20), mul(pos, 2))
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Binary heap that support values of type uint208.
|
|
|
+ *
|
|
|
+ * Each element of that structures uses 1 storage slots.
|
|
|
+ */
|
|
|
+ struct Uint208Heap {
|
|
|
+ Uint208HeapNode[] data;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Internal node type for Uint208Heap. Stores a value of type uint208.
|
|
|
+ */
|
|
|
+ struct Uint208HeapNode {
|
|
|
+ uint208 value;
|
|
|
+ uint24 index; // position -> value
|
|
|
+ uint24 lookup; // value -> position
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Lookup the root element of the heap.
|
|
|
+ */
|
|
|
+ function peek(Uint208Heap storage self) internal view returns (uint208) {
|
|
|
+ // self.data[0] will `ARRAY_ACCESS_OUT_OF_BOUNDS` panic if heap is empty.
|
|
|
+ return _unsafeNodeAccess(self, self.data[0].index).value;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Remove (and return) the root element for the heap using the default comparator.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function pop(Uint208Heap storage self) internal returns (uint208) {
|
|
|
+ return pop(self, Comparators.lt);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Remove (and return) the root element for the heap using the provided comparator.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function pop(
|
|
|
+ Uint208Heap storage self,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) internal returns (uint208) {
|
|
|
+ unchecked {
|
|
|
+ uint24 size = length(self);
|
|
|
+ if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
|
|
|
+
|
|
|
+ uint24 last = size - 1;
|
|
|
+
|
|
|
+ // get root location (in the data array) and value
|
|
|
+ Uint208HeapNode storage rootNode = _unsafeNodeAccess(self, 0);
|
|
|
+ uint24 rootIdx = rootNode.index;
|
|
|
+ Uint208HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
|
|
|
+ Uint208HeapNode storage lastNode = _unsafeNodeAccess(self, last);
|
|
|
+ uint208 rootDataValue = rootData.value;
|
|
|
+
|
|
|
+ // if root is not the last element of the data array (that will get pop-ed), reorder the data array.
|
|
|
+ if (rootIdx != last) {
|
|
|
+ // get details about the value stored in the last element of the array (that will get pop-ed)
|
|
|
+ uint24 lastDataIdx = lastNode.lookup;
|
|
|
+ uint208 lastDataValue = lastNode.value;
|
|
|
+ // copy these values to the location of the root (that is safe, and that we no longer use)
|
|
|
+ rootData.value = lastDataValue;
|
|
|
+ rootData.lookup = lastDataIdx;
|
|
|
+ // update the tree node that used to point to that last element (value now located where the root was)
|
|
|
+ _unsafeNodeAccess(self, lastDataIdx).index = rootIdx;
|
|
|
+ }
|
|
|
+
|
|
|
+ // get last leaf location (in the data array) and value
|
|
|
+ uint24 lastIdx = lastNode.index;
|
|
|
+ uint208 lastValue = _unsafeNodeAccess(self, lastIdx).value;
|
|
|
+
|
|
|
+ // move the last leaf to the root, pop last leaf ...
|
|
|
+ rootNode.index = lastIdx;
|
|
|
+ _unsafeNodeAccess(self, lastIdx).lookup = 0;
|
|
|
+ self.data.pop();
|
|
|
+
|
|
|
+ // ... and heapify
|
|
|
+ _siftDown(self, last, 0, lastValue, comp);
|
|
|
+
|
|
|
+ // return root value
|
|
|
+ return rootDataValue;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Insert a new element in the heap using the default comparator.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function insert(Uint208Heap storage self, uint208 value) internal {
|
|
|
+ insert(self, value, Comparators.lt);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Insert a new element in the heap using the provided comparator.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function insert(
|
|
|
+ Uint208Heap storage self,
|
|
|
+ uint208 value,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) internal {
|
|
|
+ uint24 size = length(self);
|
|
|
+ if (size == type(uint24).max) Panic.panic(Panic.RESOURCE_ERROR);
|
|
|
+
|
|
|
+ self.data.push(Uint208HeapNode({index: size, lookup: size, value: value}));
|
|
|
+ _siftUp(self, size, value, comp);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Return the root element for the heap, and replace it with a new value, using the default comparator.
|
|
|
+ * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function replace(Uint208Heap storage self, uint208 newValue) internal returns (uint208) {
|
|
|
+ return replace(self, newValue, Comparators.lt);
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Return the root element for the heap, and replace it with a new value, using the provided comparator.
|
|
|
+ * This is equivalent to using {pop} and {insert}, but requires only one rebalancing operation.
|
|
|
+ *
|
|
|
+ * NOTE: All inserting and removal from a heap should always be done using the same comparator. Mixing comparator
|
|
|
+ * during the lifecycle of a heap will result in undefined behavior.
|
|
|
+ */
|
|
|
+ function replace(
|
|
|
+ Uint208Heap storage self,
|
|
|
+ uint208 newValue,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) internal returns (uint208) {
|
|
|
+ uint24 size = length(self);
|
|
|
+ if (size == 0) Panic.panic(Panic.EMPTY_ARRAY_POP);
|
|
|
+
|
|
|
+ // position of the node that holds the data for the root
|
|
|
+ uint24 rootIdx = _unsafeNodeAccess(self, 0).index;
|
|
|
+ // storage pointer to the node that holds the data for the root
|
|
|
+ Uint208HeapNode storage rootData = _unsafeNodeAccess(self, rootIdx);
|
|
|
+
|
|
|
+ // cache old value and replace it
|
|
|
+ uint208 oldValue = rootData.value;
|
|
|
+ rootData.value = newValue;
|
|
|
+
|
|
|
+ // re-heapify
|
|
|
+ _siftDown(self, size, 0, newValue, comp);
|
|
|
+
|
|
|
+ // return old root value
|
|
|
+ return oldValue;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Returns the number of elements in the heap.
|
|
|
+ */
|
|
|
+ function length(Uint208Heap storage self) internal view returns (uint24) {
|
|
|
+ return self.data.length.toUint24();
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Removes all elements in the heap.
|
|
|
+ */
|
|
|
+ function clear(Uint208Heap storage self) internal {
|
|
|
+ Uint208HeapNode[] storage data = self.data;
|
|
|
+ /// @solidity memory-safe-assembly
|
|
|
+ assembly {
|
|
|
+ sstore(data.slot, 0)
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * @dev Swap node `i` and `j` in the tree.
|
|
|
+ */
|
|
|
+ function _swap(Uint208Heap storage self, uint24 i, uint24 j) private {
|
|
|
+ Uint208HeapNode storage ni = _unsafeNodeAccess(self, i);
|
|
|
+ Uint208HeapNode storage nj = _unsafeNodeAccess(self, j);
|
|
|
+ uint24 ii = ni.index;
|
|
|
+ uint24 jj = nj.index;
|
|
|
+ // update pointers to the data (swap the value)
|
|
|
+ ni.index = jj;
|
|
|
+ nj.index = ii;
|
|
|
+ // update lookup pointers for consistency
|
|
|
+ _unsafeNodeAccess(self, ii).lookup = j;
|
|
|
+ _unsafeNodeAccess(self, jj).lookup = i;
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
|
|
|
+ * comparator, and moving toward the leafs of the underlying tree.
|
|
|
+ *
|
|
|
+ * NOTE: This is a private function that is called in a trusted context with already cached parameters. `length`
|
|
|
+ * and `value` could be extracted from `self` and `pos`, but that would require redundant storage read. These
|
|
|
+ * parameters are not verified. It is the caller role to make sure the parameters are correct.
|
|
|
+ */
|
|
|
+ function _siftDown(
|
|
|
+ Uint208Heap storage self,
|
|
|
+ uint24 size,
|
|
|
+ uint24 pos,
|
|
|
+ uint208 value,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) private {
|
|
|
+ uint256 left = 2 * pos + 1; // this could overflow uint24
|
|
|
+ uint256 right = 2 * pos + 2; // this could overflow uint24
|
|
|
+
|
|
|
+ if (right < size) {
|
|
|
+ // the check guarantees that `left` and `right` are both valid uint32
|
|
|
+ uint24 lIndex = uint24(left);
|
|
|
+ uint24 rIndex = uint24(right);
|
|
|
+ uint208 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
|
|
|
+ uint208 rValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, rIndex).index).value;
|
|
|
+ if (comp(lValue, value) || comp(rValue, value)) {
|
|
|
+ uint24 index = uint24(comp(lValue, rValue).ternary(lIndex, rIndex));
|
|
|
+ _swap(self, pos, index);
|
|
|
+ _siftDown(self, size, index, value, comp);
|
|
|
+ }
|
|
|
+ } else if (left < size) {
|
|
|
+ // the check guarantees that `left` is a valid uint32
|
|
|
+ uint24 lIndex = uint24(left);
|
|
|
+ uint208 lValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, lIndex).index).value;
|
|
|
+ if (comp(lValue, value)) {
|
|
|
+ _swap(self, pos, lIndex);
|
|
|
+ _siftDown(self, size, lIndex, value, comp);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @dev Perform heap maintenance on `self`, starting at position `pos` (with the `value`), using `comp` as a
|
|
|
+ * comparator, and moving toward the root of the underlying tree.
|
|
|
+ *
|
|
|
+ * NOTE: This is a private function that is called in a trusted context with already cached parameters. `value`
|
|
|
+ * could be extracted from `self` and `pos`, but that would require redundant storage read. This parameters is not
|
|
|
+ * verified. It is the caller role to make sure the parameters are correct.
|
|
|
+ */
|
|
|
+ function _siftUp(
|
|
|
+ Uint208Heap storage self,
|
|
|
+ uint24 pos,
|
|
|
+ uint208 value,
|
|
|
+ function(uint256, uint256) view returns (bool) comp
|
|
|
+ ) private {
|
|
|
+ unchecked {
|
|
|
+ while (pos > 0) {
|
|
|
+ uint24 parent = (pos - 1) / 2;
|
|
|
+ uint208 parentValue = _unsafeNodeAccess(self, _unsafeNodeAccess(self, parent).index).value;
|
|
|
+ if (comp(parentValue, value)) break;
|
|
|
+ _swap(self, pos, parent);
|
|
|
+ pos = parent;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ function _unsafeNodeAccess(
|
|
|
+ Uint208Heap storage self,
|
|
|
+ uint24 pos
|
|
|
+ ) private pure returns (Uint208HeapNode storage result) {
|
|
|
+ assembly ("memory-safe") {
|
|
|
+ mstore(0x00, self.slot)
|
|
|
+ result.slot := add(keccak256(0x00, 0x20), pos)
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|