aacpsy.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022
  1. /*
  2. * AAC encoder psychoacoustic model
  3. * Copyright (C) 2008 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder psychoacoustic model
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/ffmath.h"
  27. #include "libavutil/mem.h"
  28. #include "avcodec.h"
  29. #include "aac.h"
  30. #include "psymodel.h"
  31. /***********************************
  32. * TODOs:
  33. * try other bitrate controlling mechanism (maybe use ratecontrol.c?)
  34. * control quality for quality-based output
  35. **********************************/
  36. /**
  37. * constants for 3GPP AAC psychoacoustic model
  38. * @{
  39. */
  40. #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
  41. #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
  42. /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */
  43. #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
  44. /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */
  45. #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
  46. /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */
  47. #define PSY_3GPP_EN_SPREAD_HI_S 1.5f
  48. /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */
  49. #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
  50. /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */
  51. #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
  52. #define PSY_3GPP_RPEMIN 0.01f
  53. #define PSY_3GPP_RPELEV 2.0f
  54. #define PSY_3GPP_C1 3.0f /* log2(8) */
  55. #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */
  56. #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */
  57. #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */
  58. #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */
  59. #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
  60. #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
  61. #define PSY_3GPP_SAVE_ADD_L -0.84285712f
  62. #define PSY_3GPP_SAVE_ADD_S -0.75f
  63. #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
  64. #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
  65. #define PSY_3GPP_SPEND_ADD_L -0.35f
  66. #define PSY_3GPP_SPEND_ADD_S -0.26111111f
  67. #define PSY_3GPP_CLIP_LO_L 0.2f
  68. #define PSY_3GPP_CLIP_LO_S 0.2f
  69. #define PSY_3GPP_CLIP_HI_L 0.95f
  70. #define PSY_3GPP_CLIP_HI_S 0.75f
  71. #define PSY_3GPP_AH_THR_LONG 0.5f
  72. #define PSY_3GPP_AH_THR_SHORT 0.63f
  73. #define PSY_PE_FORGET_SLOPE 511
  74. enum {
  75. PSY_3GPP_AH_NONE,
  76. PSY_3GPP_AH_INACTIVE,
  77. PSY_3GPP_AH_ACTIVE
  78. };
  79. #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
  80. #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f)
  81. /* LAME psy model constants */
  82. #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order
  83. #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size
  84. #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size
  85. #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence
  86. #define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block
  87. /**
  88. * @}
  89. */
  90. /**
  91. * information for single band used by 3GPP TS26.403-inspired psychoacoustic model
  92. */
  93. typedef struct AacPsyBand{
  94. float energy; ///< band energy
  95. float thr; ///< energy threshold
  96. float thr_quiet; ///< threshold in quiet
  97. float nz_lines; ///< number of non-zero spectral lines
  98. float active_lines; ///< number of active spectral lines
  99. float pe; ///< perceptual entropy
  100. float pe_const; ///< constant part of the PE calculation
  101. float norm_fac; ///< normalization factor for linearization
  102. int avoid_holes; ///< hole avoidance flag
  103. }AacPsyBand;
  104. /**
  105. * single/pair channel context for psychoacoustic model
  106. */
  107. typedef struct AacPsyChannel{
  108. AacPsyBand band[128]; ///< bands information
  109. AacPsyBand prev_band[128]; ///< bands information from the previous frame
  110. float win_energy; ///< sliding average of channel energy
  111. float iir_state[2]; ///< hi-pass IIR filter state
  112. uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence)
  113. enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame
  114. /* LAME psy model specific members */
  115. float attack_threshold; ///< attack threshold for this channel
  116. float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS];
  117. int prev_attack; ///< attack value for the last short block in the previous sequence
  118. }AacPsyChannel;
  119. /**
  120. * psychoacoustic model frame type-dependent coefficients
  121. */
  122. typedef struct AacPsyCoeffs{
  123. float ath; ///< absolute threshold of hearing per bands
  124. float barks; ///< Bark value for each spectral band in long frame
  125. float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame
  126. float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame
  127. float min_snr; ///< minimal SNR
  128. }AacPsyCoeffs;
  129. /**
  130. * 3GPP TS26.403-inspired psychoacoustic model specific data
  131. */
  132. typedef struct AacPsyContext{
  133. int chan_bitrate; ///< bitrate per channel
  134. int frame_bits; ///< average bits per frame
  135. int fill_level; ///< bit reservoir fill level
  136. struct {
  137. float min; ///< minimum allowed PE for bit factor calculation
  138. float max; ///< maximum allowed PE for bit factor calculation
  139. float previous; ///< allowed PE of the previous frame
  140. float correction; ///< PE correction factor
  141. } pe;
  142. AacPsyCoeffs psy_coef[2][64];
  143. AacPsyChannel *ch;
  144. float global_quality; ///< normalized global quality taken from avctx
  145. }AacPsyContext;
  146. /**
  147. * LAME psy model preset struct
  148. */
  149. typedef struct PsyLamePreset {
  150. int quality; ///< Quality to map the rest of the values to.
  151. /* This is overloaded to be both kbps per channel in ABR mode, and
  152. * requested quality in constant quality mode.
  153. */
  154. float st_lrm; ///< short threshold for L, R, and M channels
  155. } PsyLamePreset;
  156. /**
  157. * LAME psy model preset table for ABR
  158. */
  159. static const PsyLamePreset psy_abr_map[] = {
  160. /* TODO: Tuning. These were taken from LAME. */
  161. /* kbps/ch st_lrm */
  162. { 8, 6.60},
  163. { 16, 6.60},
  164. { 24, 6.60},
  165. { 32, 6.60},
  166. { 40, 6.60},
  167. { 48, 6.60},
  168. { 56, 6.60},
  169. { 64, 6.40},
  170. { 80, 6.00},
  171. { 96, 5.60},
  172. {112, 5.20},
  173. {128, 5.20},
  174. {160, 5.20}
  175. };
  176. /**
  177. * LAME psy model preset table for constant quality
  178. */
  179. static const PsyLamePreset psy_vbr_map[] = {
  180. /* vbr_q st_lrm */
  181. { 0, 4.20},
  182. { 1, 4.20},
  183. { 2, 4.20},
  184. { 3, 4.20},
  185. { 4, 4.20},
  186. { 5, 4.20},
  187. { 6, 4.20},
  188. { 7, 4.20},
  189. { 8, 4.20},
  190. { 9, 4.20},
  191. {10, 4.20}
  192. };
  193. /**
  194. * LAME psy model FIR coefficient table
  195. */
  196. static const float psy_fir_coeffs[] = {
  197. -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
  198. -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
  199. -5.52212e-17 * 2, -0.313819 * 2
  200. };
  201. /**
  202. * Calculate the ABR attack threshold from the above LAME psymodel table.
  203. */
  204. static float lame_calc_attack_threshold(int bitrate)
  205. {
  206. /* Assume max bitrate to start with */
  207. int lower_range = 12, upper_range = 12;
  208. int lower_range_kbps = psy_abr_map[12].quality;
  209. int upper_range_kbps = psy_abr_map[12].quality;
  210. int i;
  211. /* Determine which bitrates the value specified falls between.
  212. * If the loop ends without breaking our above assumption of 320kbps was correct.
  213. */
  214. for (i = 1; i < 13; i++) {
  215. if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
  216. upper_range = i;
  217. upper_range_kbps = psy_abr_map[i ].quality;
  218. lower_range = i - 1;
  219. lower_range_kbps = psy_abr_map[i - 1].quality;
  220. break; /* Upper range found */
  221. }
  222. }
  223. /* Determine which range the value specified is closer to */
  224. if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
  225. return psy_abr_map[lower_range].st_lrm;
  226. return psy_abr_map[upper_range].st_lrm;
  227. }
  228. /**
  229. * LAME psy model specific initialization
  230. */
  231. static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
  232. {
  233. int i, j;
  234. for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
  235. AacPsyChannel *pch = &ctx->ch[i];
  236. if (avctx->flags & AV_CODEC_FLAG_QSCALE)
  237. pch->attack_threshold = psy_vbr_map[av_clip(avctx->global_quality / FF_QP2LAMBDA, 0, 10)].st_lrm;
  238. else
  239. pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->ch_layout.nb_channels / 1000);
  240. for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++)
  241. pch->prev_energy_subshort[j] = 10.0f;
  242. }
  243. }
  244. /**
  245. * Calculate Bark value for given line.
  246. */
  247. static av_cold float calc_bark(float f)
  248. {
  249. return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
  250. }
  251. #define ATH_ADD 4
  252. /**
  253. * Calculate ATH value for given frequency.
  254. * Borrowed from Lame.
  255. */
  256. static av_cold float ath(float f, float add)
  257. {
  258. f /= 1000.0f;
  259. return 3.64 * pow(f, -0.8)
  260. - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
  261. + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
  262. + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
  263. }
  264. static av_cold int psy_3gpp_init(FFPsyContext *ctx) {
  265. AacPsyContext *pctx;
  266. float bark;
  267. int i, j, g, start;
  268. float prev, minscale, minath, minsnr, pe_min;
  269. int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->ch_layout.nb_channels);
  270. const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
  271. const float num_bark = calc_bark((float)bandwidth);
  272. if (bandwidth <= 0)
  273. return AVERROR(EINVAL);
  274. ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext));
  275. if (!ctx->model_priv_data)
  276. return AVERROR(ENOMEM);
  277. pctx = ctx->model_priv_data;
  278. pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f;
  279. if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
  280. /* Use the target average bitrate to compute spread parameters */
  281. chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120));
  282. }
  283. pctx->chan_bitrate = chan_bitrate;
  284. pctx->frame_bits = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate);
  285. pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
  286. pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f);
  287. ctx->bitres.size = 6144 - pctx->frame_bits;
  288. ctx->bitres.size -= ctx->bitres.size % 8;
  289. pctx->fill_level = ctx->bitres.size;
  290. minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD);
  291. for (j = 0; j < 2; j++) {
  292. AacPsyCoeffs *coeffs = pctx->psy_coef[j];
  293. const uint8_t *band_sizes = ctx->bands[j];
  294. float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f);
  295. float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate;
  296. /* reference encoder uses 2.4% here instead of 60% like the spec says */
  297. float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark;
  298. float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L;
  299. /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */
  300. float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1;
  301. i = 0;
  302. prev = 0.0;
  303. for (g = 0; g < ctx->num_bands[j]; g++) {
  304. i += band_sizes[g];
  305. bark = calc_bark((i-1) * line_to_frequency);
  306. coeffs[g].barks = (bark + prev) / 2.0;
  307. prev = bark;
  308. }
  309. for (g = 0; g < ctx->num_bands[j] - 1; g++) {
  310. AacPsyCoeffs *coeff = &coeffs[g];
  311. float bark_width = coeffs[g+1].barks - coeffs->barks;
  312. coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW);
  313. coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI);
  314. coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low);
  315. coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi);
  316. pe_min = bark_pe * bark_width;
  317. minsnr = exp2(pe_min / band_sizes[g]) - 1.5f;
  318. coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB);
  319. }
  320. start = 0;
  321. for (g = 0; g < ctx->num_bands[j]; g++) {
  322. minscale = ath(start * line_to_frequency, ATH_ADD);
  323. for (i = 1; i < band_sizes[g]; i++)
  324. minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD));
  325. coeffs[g].ath = minscale - minath;
  326. start += band_sizes[g];
  327. }
  328. }
  329. pctx->ch = av_calloc(ctx->avctx->ch_layout.nb_channels, sizeof(*pctx->ch));
  330. if (!pctx->ch) {
  331. av_freep(&ctx->model_priv_data);
  332. return AVERROR(ENOMEM);
  333. }
  334. lame_window_init(pctx, ctx->avctx);
  335. return 0;
  336. }
  337. /**
  338. * IIR filter used in block switching decision
  339. */
  340. static float iir_filter(int in, float state[2])
  341. {
  342. float ret;
  343. ret = 0.7548f * (in - state[0]) + 0.5095f * state[1];
  344. state[0] = in;
  345. state[1] = ret;
  346. return ret;
  347. }
  348. /**
  349. * window grouping information stored as bits (0 - new group, 1 - group continues)
  350. */
  351. static const uint8_t window_grouping[9] = {
  352. 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
  353. };
  354. /**
  355. * Tell encoder which window types to use.
  356. * @see 3GPP TS26.403 5.4.1 "Blockswitching"
  357. */
  358. av_unused static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx,
  359. const int16_t *audio,
  360. const int16_t *la,
  361. int channel, int prev_type)
  362. {
  363. int i, j;
  364. int br = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate;
  365. int attack_ratio = br <= 16000 ? 18 : 10;
  366. AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
  367. AacPsyChannel *pch = &pctx->ch[channel];
  368. uint8_t grouping = 0;
  369. int next_type = pch->next_window_seq;
  370. FFPsyWindowInfo wi = { { 0 } };
  371. if (la) {
  372. float s[8], v;
  373. int switch_to_eight = 0;
  374. float sum = 0.0, sum2 = 0.0;
  375. int attack_n = 0;
  376. int stay_short = 0;
  377. for (i = 0; i < 8; i++) {
  378. for (j = 0; j < 128; j++) {
  379. v = iir_filter(la[i*128+j], pch->iir_state);
  380. sum += v*v;
  381. }
  382. s[i] = sum;
  383. sum2 += sum;
  384. }
  385. for (i = 0; i < 8; i++) {
  386. if (s[i] > pch->win_energy * attack_ratio) {
  387. attack_n = i + 1;
  388. switch_to_eight = 1;
  389. break;
  390. }
  391. }
  392. pch->win_energy = pch->win_energy*7/8 + sum2/64;
  393. wi.window_type[1] = prev_type;
  394. switch (prev_type) {
  395. case ONLY_LONG_SEQUENCE:
  396. wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
  397. next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
  398. break;
  399. case LONG_START_SEQUENCE:
  400. wi.window_type[0] = EIGHT_SHORT_SEQUENCE;
  401. grouping = pch->next_grouping;
  402. next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
  403. break;
  404. case LONG_STOP_SEQUENCE:
  405. wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE;
  406. next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE;
  407. break;
  408. case EIGHT_SHORT_SEQUENCE:
  409. stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight;
  410. wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
  411. grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0;
  412. next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE;
  413. break;
  414. }
  415. pch->next_grouping = window_grouping[attack_n];
  416. pch->next_window_seq = next_type;
  417. } else {
  418. for (i = 0; i < 3; i++)
  419. wi.window_type[i] = prev_type;
  420. grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0;
  421. }
  422. wi.window_shape = 1;
  423. if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
  424. wi.num_windows = 1;
  425. wi.grouping[0] = 1;
  426. } else {
  427. int lastgrp = 0;
  428. wi.num_windows = 8;
  429. for (i = 0; i < 8; i++) {
  430. if (!((grouping >> i) & 1))
  431. lastgrp = i;
  432. wi.grouping[lastgrp]++;
  433. }
  434. }
  435. return wi;
  436. }
  437. /* 5.6.1.2 "Calculation of Bit Demand" */
  438. static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size,
  439. int short_window)
  440. {
  441. const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L;
  442. const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L;
  443. const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L;
  444. const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L;
  445. const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L;
  446. const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L;
  447. float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe;
  448. ctx->fill_level += ctx->frame_bits - bits;
  449. ctx->fill_level = av_clip(ctx->fill_level, 0, size);
  450. fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high);
  451. clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max);
  452. bit_save = (fill_level + bitsave_add) * bitsave_slope;
  453. assert(bit_save <= 0.3f && bit_save >= -0.05000001f);
  454. bit_spend = (fill_level + bitspend_add) * bitspend_slope;
  455. assert(bit_spend <= 0.5f && bit_spend >= -0.1f);
  456. /* The bit factor graph in the spec is obviously incorrect.
  457. * bit_spend + ((bit_spend - bit_spend))...
  458. * The reference encoder subtracts everything from 1, but also seems incorrect.
  459. * 1 - bit_save + ((bit_spend + bit_save))...
  460. * Hopefully below is correct.
  461. */
  462. bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min);
  463. /* NOTE: The reference encoder attempts to center pe max/min around the current pe.
  464. * Here we do that by slowly forgetting pe.min when pe stays in a range that makes
  465. * it unlikely (ie: above the mean)
  466. */
  467. ctx->pe.max = FFMAX(pe, ctx->pe.max);
  468. forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE)
  469. + FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1);
  470. ctx->pe.min = FFMIN(pe, forgetful_min_pe);
  471. /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid
  472. * reservoir starvation from producing zero-bit frames
  473. */
  474. return FFMIN(
  475. ctx->frame_bits * bit_factor,
  476. FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8));
  477. }
  478. static float calc_pe_3gpp(AacPsyBand *band)
  479. {
  480. float pe, a;
  481. band->pe = 0.0f;
  482. band->pe_const = 0.0f;
  483. band->active_lines = 0.0f;
  484. if (band->energy > band->thr) {
  485. a = log2f(band->energy);
  486. pe = a - log2f(band->thr);
  487. band->active_lines = band->nz_lines;
  488. if (pe < PSY_3GPP_C1) {
  489. pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2;
  490. a = a * PSY_3GPP_C3 + PSY_3GPP_C2;
  491. band->active_lines *= PSY_3GPP_C3;
  492. }
  493. band->pe = pe * band->nz_lines;
  494. band->pe_const = a * band->nz_lines;
  495. }
  496. return band->pe;
  497. }
  498. static float calc_reduction_3gpp(float a, float desired_pe, float pe,
  499. float active_lines)
  500. {
  501. float thr_avg, reduction;
  502. if(active_lines == 0.0)
  503. return 0;
  504. thr_avg = exp2f((a - pe) / (4.0f * active_lines));
  505. reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg;
  506. return FFMAX(reduction, 0.0f);
  507. }
  508. static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr,
  509. float reduction)
  510. {
  511. float thr = band->thr;
  512. if (band->energy > thr) {
  513. thr = sqrtf(thr);
  514. thr = sqrtf(thr) + reduction;
  515. thr *= thr;
  516. thr *= thr;
  517. /* This deviates from the 3GPP spec to match the reference encoder.
  518. * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands
  519. * that have hole avoidance on (active or inactive). It always reduces the
  520. * threshold of bands with hole avoidance off.
  521. */
  522. if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) {
  523. thr = FFMAX(band->thr, band->energy * min_snr);
  524. band->avoid_holes = PSY_3GPP_AH_ACTIVE;
  525. }
  526. }
  527. return thr;
  528. }
  529. static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch,
  530. const uint8_t *band_sizes, const float *coefs, const int cutoff)
  531. {
  532. int i, w, g;
  533. int start = 0, wstart = 0;
  534. for (w = 0; w < wi->num_windows*16; w += 16) {
  535. wstart = 0;
  536. for (g = 0; g < num_bands; g++) {
  537. AacPsyBand *band = &pch->band[w+g];
  538. float form_factor = 0.0f;
  539. float Temp;
  540. band->energy = 0.0f;
  541. if (wstart < cutoff) {
  542. for (i = 0; i < band_sizes[g]; i++) {
  543. band->energy += coefs[start+i] * coefs[start+i];
  544. form_factor += sqrtf(fabs(coefs[start+i]));
  545. }
  546. }
  547. Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0;
  548. band->thr = band->energy * 0.001258925f;
  549. band->nz_lines = form_factor * sqrtf(Temp);
  550. start += band_sizes[g];
  551. wstart += band_sizes[g];
  552. }
  553. }
  554. }
  555. static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs)
  556. {
  557. int i, j;
  558. for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) {
  559. float sum1, sum2;
  560. sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2];
  561. sum2 = 0.0;
  562. for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) {
  563. sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]);
  564. sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]);
  565. }
  566. /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768.
  567. * Tuning this for normalized floats would be difficult. */
  568. hpfsmpl[i] = (sum1 + sum2) * 32768.0f;
  569. }
  570. }
  571. /**
  572. * Calculate band thresholds as suggested in 3GPP TS26.403
  573. */
  574. static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel,
  575. const float *coefs, const FFPsyWindowInfo *wi)
  576. {
  577. AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
  578. AacPsyChannel *pch = &pctx->ch[channel];
  579. int i, w, g;
  580. float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0};
  581. float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
  582. float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f);
  583. const int num_bands = ctx->num_bands[wi->num_windows == 8];
  584. const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
  585. AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8];
  586. const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG;
  587. const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx);
  588. const int cutoff = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate;
  589. //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation"
  590. calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff);
  591. //modify thresholds and energies - spread, threshold in quiet, pre-echo control
  592. for (w = 0; w < wi->num_windows*16; w += 16) {
  593. AacPsyBand *bands = &pch->band[w];
  594. /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */
  595. spread_en[0] = bands[0].energy;
  596. for (g = 1; g < num_bands; g++) {
  597. bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]);
  598. spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]);
  599. }
  600. for (g = num_bands - 2; g >= 0; g--) {
  601. bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]);
  602. spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]);
  603. }
  604. //5.4.2.4 "Threshold in quiet"
  605. for (g = 0; g < num_bands; g++) {
  606. AacPsyBand *band = &bands[g];
  607. band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath);
  608. //5.4.2.5 "Pre-echo control"
  609. if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE)))
  610. band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr,
  611. PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet));
  612. /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */
  613. pe += calc_pe_3gpp(band);
  614. a += band->pe_const;
  615. active_lines += band->active_lines;
  616. /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */
  617. if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f)
  618. band->avoid_holes = PSY_3GPP_AH_NONE;
  619. else
  620. band->avoid_holes = PSY_3GPP_AH_INACTIVE;
  621. }
  622. }
  623. /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */
  624. ctx->ch[channel].entropy = pe;
  625. if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) {
  626. /* (2.5 * 120) achieves almost transparent rate, and we want to give
  627. * ample room downwards, so we make that equivalent to QSCALE=2.4
  628. */
  629. desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f);
  630. desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
  631. desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
  632. /* PE slope smoothing */
  633. if (ctx->bitres.bits > 0) {
  634. desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe));
  635. desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping
  636. }
  637. pctx->pe.max = FFMAX(pe, pctx->pe.max);
  638. pctx->pe.min = FFMIN(pe, pctx->pe.min);
  639. } else {
  640. desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
  641. desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits);
  642. /* NOTE: PE correction is kept simple. During initial testing it had very
  643. * little effect on the final bitrate. Probably a good idea to come
  644. * back and do more testing later.
  645. */
  646. if (ctx->bitres.bits > 0)
  647. desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits),
  648. 0.85f, 1.15f);
  649. }
  650. pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits);
  651. ctx->bitres.alloc = desired_bits;
  652. if (desired_pe < pe) {
  653. /* 5.6.1.3.4 "First Estimation of the reduction value" */
  654. for (w = 0; w < wi->num_windows*16; w += 16) {
  655. reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines);
  656. pe = 0.0f;
  657. a = 0.0f;
  658. active_lines = 0.0f;
  659. for (g = 0; g < num_bands; g++) {
  660. AacPsyBand *band = &pch->band[w+g];
  661. band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
  662. /* recalculate PE */
  663. pe += calc_pe_3gpp(band);
  664. a += band->pe_const;
  665. active_lines += band->active_lines;
  666. }
  667. }
  668. /* 5.6.1.3.5 "Second Estimation of the reduction value" */
  669. for (i = 0; i < 2; i++) {
  670. float pe_no_ah = 0.0f, desired_pe_no_ah;
  671. active_lines = a = 0.0f;
  672. for (w = 0; w < wi->num_windows*16; w += 16) {
  673. for (g = 0; g < num_bands; g++) {
  674. AacPsyBand *band = &pch->band[w+g];
  675. if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) {
  676. pe_no_ah += band->pe;
  677. a += band->pe_const;
  678. active_lines += band->active_lines;
  679. }
  680. }
  681. }
  682. desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f);
  683. if (active_lines > 0.0f)
  684. reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines);
  685. pe = 0.0f;
  686. for (w = 0; w < wi->num_windows*16; w += 16) {
  687. for (g = 0; g < num_bands; g++) {
  688. AacPsyBand *band = &pch->band[w+g];
  689. if (active_lines > 0.0f)
  690. band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction);
  691. pe += calc_pe_3gpp(band);
  692. if (band->thr > 0.0f)
  693. band->norm_fac = band->active_lines / band->thr;
  694. else
  695. band->norm_fac = 0.0f;
  696. norm_fac += band->norm_fac;
  697. }
  698. }
  699. delta_pe = desired_pe - pe;
  700. if (fabs(delta_pe) > 0.05f * desired_pe)
  701. break;
  702. }
  703. if (pe < 1.15f * desired_pe) {
  704. /* 6.6.1.3.6 "Final threshold modification by linearization" */
  705. norm_fac = norm_fac ? 1.0f / norm_fac : 0;
  706. for (w = 0; w < wi->num_windows*16; w += 16) {
  707. for (g = 0; g < num_bands; g++) {
  708. AacPsyBand *band = &pch->band[w+g];
  709. if (band->active_lines > 0.5f) {
  710. float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe;
  711. float thr = band->thr;
  712. thr *= exp2f(delta_sfb_pe / band->active_lines);
  713. if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE)
  714. thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy);
  715. band->thr = thr;
  716. }
  717. }
  718. }
  719. } else {
  720. /* 5.6.1.3.7 "Further perceptual entropy reduction" */
  721. g = num_bands;
  722. while (pe > desired_pe && g--) {
  723. for (w = 0; w < wi->num_windows*16; w+= 16) {
  724. AacPsyBand *band = &pch->band[w+g];
  725. if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) {
  726. coeffs[g].min_snr = PSY_SNR_1DB;
  727. band->thr = band->energy * PSY_SNR_1DB;
  728. pe += band->active_lines * 1.5f - band->pe;
  729. }
  730. }
  731. }
  732. /* TODO: allow more holes (unused without mid/side) */
  733. }
  734. }
  735. for (w = 0; w < wi->num_windows*16; w += 16) {
  736. for (g = 0; g < num_bands; g++) {
  737. AacPsyBand *band = &pch->band[w+g];
  738. FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g];
  739. psy_band->threshold = band->thr;
  740. psy_band->energy = band->energy;
  741. psy_band->spread = band->active_lines * 2.0f / band_sizes[g];
  742. psy_band->bits = PSY_3GPP_PE_TO_BITS(band->pe);
  743. }
  744. }
  745. memcpy(pch->prev_band, pch->band, sizeof(pch->band));
  746. }
  747. static void psy_3gpp_analyze(FFPsyContext *ctx, int channel,
  748. const float **coeffs, const FFPsyWindowInfo *wi)
  749. {
  750. int ch;
  751. FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel);
  752. for (ch = 0; ch < group->num_ch; ch++)
  753. psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]);
  754. }
  755. static av_cold void psy_3gpp_end(FFPsyContext *apc)
  756. {
  757. AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data;
  758. if (pctx)
  759. av_freep(&pctx->ch);
  760. av_freep(&apc->model_priv_data);
  761. }
  762. static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
  763. {
  764. int blocktype = ONLY_LONG_SEQUENCE;
  765. if (uselongblock) {
  766. if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE)
  767. blocktype = LONG_STOP_SEQUENCE;
  768. } else {
  769. blocktype = EIGHT_SHORT_SEQUENCE;
  770. if (ctx->next_window_seq == ONLY_LONG_SEQUENCE)
  771. ctx->next_window_seq = LONG_START_SEQUENCE;
  772. if (ctx->next_window_seq == LONG_STOP_SEQUENCE)
  773. ctx->next_window_seq = EIGHT_SHORT_SEQUENCE;
  774. }
  775. wi->window_type[0] = ctx->next_window_seq;
  776. ctx->next_window_seq = blocktype;
  777. }
  778. static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio,
  779. const float *la, int channel, int prev_type)
  780. {
  781. AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data;
  782. AacPsyChannel *pch = &pctx->ch[channel];
  783. int grouping = 0;
  784. int uselongblock = 1;
  785. int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
  786. int i;
  787. FFPsyWindowInfo wi = { { 0 } };
  788. if (la) {
  789. float hpfsmpl[AAC_BLOCK_SIZE_LONG];
  790. const float *pf = hpfsmpl;
  791. float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
  792. float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS];
  793. float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 };
  794. const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN);
  795. int att_sum = 0;
  796. /* LAME comment: apply high pass filter of fs/4 */
  797. psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs);
  798. /* Calculate the energies of each sub-shortblock */
  799. for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) {
  800. energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
  801. assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
  802. attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
  803. energy_short[0] += energy_subshort[i];
  804. }
  805. for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) {
  806. const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS);
  807. float p = 1.0f;
  808. for (; pf < pfe; pf++)
  809. p = FFMAX(p, fabsf(*pf));
  810. pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p;
  811. energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p;
  812. /* NOTE: The indexes below are [i + 3 - 2] in the LAME source.
  813. * Obviously the 3 and 2 have some significance, or this would be just [i + 1]
  814. * (which is what we use here). What the 3 stands for is ambiguous, as it is both
  815. * number of short blocks, and the number of sub-short blocks.
  816. * It seems that LAME is comparing each sub-block to sub-block + 1 in the
  817. * previous block.
  818. */
  819. if (p > energy_subshort[i + 1])
  820. p = p / energy_subshort[i + 1];
  821. else if (energy_subshort[i + 1] > p * 10.0f)
  822. p = energy_subshort[i + 1] / (p * 10.0f);
  823. else
  824. p = 0.0;
  825. attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p;
  826. }
  827. /* compare energy between sub-short blocks */
  828. for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++)
  829. if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
  830. if (attack_intensity[i] > pch->attack_threshold)
  831. attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1;
  832. /* should have energy change between short blocks, in order to avoid periodic signals */
  833. /* Good samples to show the effect are Trumpet test songs */
  834. /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */
  835. /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */
  836. for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) {
  837. const float u = energy_short[i - 1];
  838. const float v = energy_short[i];
  839. const float m = FFMAX(u, v);
  840. if (m < 40000) { /* (2) */
  841. if (u < 1.7f * v && v < 1.7f * u) { /* (1) */
  842. if (i == 1 && attacks[0] < attacks[i])
  843. attacks[0] = 0;
  844. attacks[i] = 0;
  845. }
  846. }
  847. att_sum += attacks[i];
  848. }
  849. if (attacks[0] <= pch->prev_attack)
  850. attacks[0] = 0;
  851. att_sum += attacks[0];
  852. /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */
  853. if (pch->prev_attack == 3 || att_sum) {
  854. uselongblock = 0;
  855. for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
  856. if (attacks[i] && attacks[i-1])
  857. attacks[i] = 0;
  858. }
  859. } else {
  860. /* We have no lookahead info, so just use same type as the previous sequence. */
  861. uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE);
  862. }
  863. lame_apply_block_type(pch, &wi, uselongblock);
  864. wi.window_type[1] = prev_type;
  865. if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) {
  866. wi.num_windows = 1;
  867. wi.grouping[0] = 1;
  868. if (wi.window_type[0] == LONG_START_SEQUENCE)
  869. wi.window_shape = 0;
  870. else
  871. wi.window_shape = 1;
  872. } else {
  873. int lastgrp = 0;
  874. wi.num_windows = 8;
  875. wi.window_shape = 0;
  876. for (i = 0; i < 8; i++) {
  877. if (!((pch->next_grouping >> i) & 1))
  878. lastgrp = i;
  879. wi.grouping[lastgrp]++;
  880. }
  881. }
  882. /* Determine grouping, based on the location of the first attack, and save for
  883. * the next frame.
  884. * FIXME: Move this to analysis.
  885. * TODO: Tune groupings depending on attack location
  886. * TODO: Handle more than one attack in a group
  887. */
  888. for (i = 0; i < 9; i++) {
  889. if (attacks[i]) {
  890. grouping = i;
  891. break;
  892. }
  893. }
  894. pch->next_grouping = window_grouping[grouping];
  895. pch->prev_attack = attacks[8];
  896. return wi;
  897. }
  898. const FFPsyModel ff_aac_psy_model =
  899. {
  900. .name = "3GPP TS 26.403-inspired model",
  901. .init = psy_3gpp_init,
  902. .window = psy_lame_window,
  903. .analyze = psy_3gpp_analyze,
  904. .end = psy_3gpp_end,
  905. };