dnxhdenc.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369
  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/mem.h"
  28. #include "libavutil/mem_internal.h"
  29. #include "libavutil/opt.h"
  30. #include "avcodec.h"
  31. #include "blockdsp.h"
  32. #include "codec_internal.h"
  33. #include "encode.h"
  34. #include "fdctdsp.h"
  35. #include "mathops.h"
  36. #include "mpegvideo.h"
  37. #include "mpegvideoenc.h"
  38. #include "pixblockdsp.h"
  39. #include "profiles.h"
  40. #include "dnxhdenc.h"
  41. // The largest value that will not lead to overflow for 10-bit samples.
  42. #define DNX10BIT_QMAT_SHIFT 18
  43. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  44. #define LAMBDA_FRAC_BITS 10
  45. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  46. static const AVOption options[] = {
  47. { "nitris_compat", "encode with Avid Nitris compatibility",
  48. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
  49. { "ibias", "intra quant bias",
  50. offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
  51. { .i64 = 0 }, INT_MIN, INT_MAX, VE },
  52. { "profile", NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
  53. { .i64 = AV_PROFILE_DNXHD },
  54. AV_PROFILE_DNXHD, AV_PROFILE_DNXHR_444, VE, .unit = "profile" },
  55. { "dnxhd", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHD },
  56. 0, 0, VE, .unit = "profile" },
  57. { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_444 },
  58. 0, 0, VE, .unit = "profile" },
  59. { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_HQX },
  60. 0, 0, VE, .unit = "profile" },
  61. { "dnxhr_hq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_HQ },
  62. 0, 0, VE, .unit = "profile" },
  63. { "dnxhr_sq", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_SQ },
  64. 0, 0, VE, .unit = "profile" },
  65. { "dnxhr_lb", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = AV_PROFILE_DNXHR_LB },
  66. 0, 0, VE, .unit = "profile" },
  67. { NULL }
  68. };
  69. static const AVClass dnxhd_class = {
  70. .class_name = "dnxhd",
  71. .item_name = av_default_item_name,
  72. .option = options,
  73. .version = LIBAVUTIL_VERSION_INT,
  74. };
  75. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
  76. const uint8_t *pixels,
  77. ptrdiff_t line_size)
  78. {
  79. int i;
  80. for (i = 0; i < 4; i++) {
  81. block[0] = pixels[0];
  82. block[1] = pixels[1];
  83. block[2] = pixels[2];
  84. block[3] = pixels[3];
  85. block[4] = pixels[4];
  86. block[5] = pixels[5];
  87. block[6] = pixels[6];
  88. block[7] = pixels[7];
  89. pixels += line_size;
  90. block += 8;
  91. }
  92. memcpy(block, block - 8, sizeof(*block) * 8);
  93. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  94. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  95. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  96. }
  97. static av_always_inline
  98. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
  99. const uint8_t *pixels,
  100. ptrdiff_t line_size)
  101. {
  102. memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  103. memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
  104. memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  105. memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
  106. memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  107. memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
  108. memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  109. memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
  110. }
  111. static int dnxhd_10bit_dct_quantize_444(MPVEncContext *ctx, int16_t *block,
  112. int n, int qscale, int *overflow)
  113. {
  114. int i, j, level, last_non_zero, start_i;
  115. const int *qmat;
  116. const uint8_t *scantable = ctx->c.intra_scantable.scantable;
  117. int bias;
  118. int max = 0;
  119. unsigned int threshold1, threshold2;
  120. ctx->fdsp.fdct(block);
  121. block[0] = (block[0] + 2) >> 2;
  122. start_i = 1;
  123. last_non_zero = 0;
  124. qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  125. bias= ctx->intra_quant_bias * (1 << (16 - 8));
  126. threshold1 = (1 << 16) - bias - 1;
  127. threshold2 = (threshold1 << 1);
  128. for (i = 63; i >= start_i; i--) {
  129. j = scantable[i];
  130. level = block[j] * qmat[j];
  131. if (((unsigned)(level + threshold1)) > threshold2) {
  132. last_non_zero = i;
  133. break;
  134. } else{
  135. block[j]=0;
  136. }
  137. }
  138. for (i = start_i; i <= last_non_zero; i++) {
  139. j = scantable[i];
  140. level = block[j] * qmat[j];
  141. if (((unsigned)(level + threshold1)) > threshold2) {
  142. if (level > 0) {
  143. level = (bias + level) >> 16;
  144. block[j] = level;
  145. } else{
  146. level = (bias - level) >> 16;
  147. block[j] = -level;
  148. }
  149. max |= level;
  150. } else {
  151. block[j] = 0;
  152. }
  153. }
  154. *overflow = ctx->max_qcoeff < max; //overflow might have happened
  155. /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
  156. if (ctx->c.idsp.perm_type != FF_IDCT_PERM_NONE)
  157. ff_block_permute(block, ctx->c.idsp.idct_permutation,
  158. scantable, last_non_zero);
  159. return last_non_zero;
  160. }
  161. static int dnxhd_10bit_dct_quantize(MPVEncContext *ctx, int16_t *block,
  162. int n, int qscale, int *overflow)
  163. {
  164. const uint8_t *scantable = ctx->c.intra_scantable.scantable;
  165. const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
  166. int last_non_zero = 0;
  167. int i;
  168. ctx->fdsp.fdct(block);
  169. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  170. block[0] = (block[0] + 2) >> 2;
  171. for (i = 1; i < 64; ++i) {
  172. int j = scantable[i];
  173. int sign = FF_SIGNBIT(block[j]);
  174. int level = (block[j] ^ sign) - sign;
  175. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  176. block[j] = (level ^ sign) - sign;
  177. if (level)
  178. last_non_zero = i;
  179. }
  180. /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
  181. if (ctx->c.idsp.perm_type != FF_IDCT_PERM_NONE)
  182. ff_block_permute(block, ctx->c.idsp.idct_permutation,
  183. scantable, last_non_zero);
  184. return last_non_zero;
  185. }
  186. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  187. {
  188. int i, j, level, run;
  189. int max_level = 1 << (ctx->bit_depth + 2);
  190. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
  191. !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits, max_level * 4) ||
  192. !(ctx->run_codes = av_mallocz(63 * 2)) ||
  193. !(ctx->run_bits = av_mallocz(63)))
  194. return AVERROR(ENOMEM);
  195. ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
  196. ctx->vlc_bits = ctx->orig_vlc_bits + max_level * 2;
  197. for (level = -max_level; level < max_level; level++) {
  198. for (run = 0; run < 2; run++) {
  199. int index = level * (1 << 1) | run;
  200. int sign, offset = 0, alevel = level;
  201. MASK_ABS(sign, alevel);
  202. if (alevel > 64) {
  203. offset = (alevel - 1) >> 6;
  204. alevel -= offset << 6;
  205. }
  206. for (j = 0; j < 257; j++) {
  207. if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
  208. (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
  209. (!run || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
  210. av_assert1(!ctx->vlc_codes[index]);
  211. if (alevel) {
  212. ctx->vlc_codes[index] =
  213. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  214. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  215. } else {
  216. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  217. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  218. }
  219. break;
  220. }
  221. }
  222. av_assert0(!alevel || j < 257);
  223. if (offset) {
  224. ctx->vlc_codes[index] =
  225. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  226. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  227. }
  228. }
  229. }
  230. for (i = 0; i < 62; i++) {
  231. int run = ctx->cid_table->run[i];
  232. av_assert0(run < 63);
  233. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  234. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  235. }
  236. return 0;
  237. }
  238. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  239. {
  240. // init first elem to 1 to avoid div by 0 in convert_matrix
  241. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  242. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  243. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  244. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l, ctx->m.c.avctx->qmax + 1) ||
  245. !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c, ctx->m.c.avctx->qmax + 1) ||
  246. !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.c.avctx->qmax + 1) ||
  247. !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.c.avctx->qmax + 1))
  248. return AVERROR(ENOMEM);
  249. if (ctx->bit_depth == 8) {
  250. for (int i = 1; i < 64; i++) {
  251. int j = ctx->m.c.idsp.idct_permutation[ff_zigzag_direct[i]];
  252. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  253. }
  254. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  255. weight_matrix, ctx->intra_quant_bias, 1,
  256. ctx->m.c.avctx->qmax, 1);
  257. for (int i = 1; i < 64; i++) {
  258. int j = ctx->m.c.idsp.idct_permutation[ff_zigzag_direct[i]];
  259. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  260. }
  261. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  262. weight_matrix, ctx->intra_quant_bias, 1,
  263. ctx->m.c.avctx->qmax, 1);
  264. for (int qscale = 1; qscale <= ctx->m.c.avctx->qmax; qscale++) {
  265. for (int i = 0; i < 64; i++) {
  266. ctx->qmatrix_l[qscale][i] <<= 2;
  267. ctx->qmatrix_c[qscale][i] <<= 2;
  268. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  269. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  270. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  271. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  272. }
  273. }
  274. } else {
  275. // 10-bit
  276. for (int qscale = 1; qscale <= ctx->m.c.avctx->qmax; qscale++) {
  277. for (int i = 1; i < 64; i++) {
  278. int j = ff_zigzag_direct[i];
  279. /* The quantization formula from the VC-3 standard is:
  280. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  281. * (qscale * weight_table[i]))
  282. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  283. * The s factor compensates scaling of DCT coefficients done by
  284. * the DCT routines, and therefore is not present in standard.
  285. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  286. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  287. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  288. * (qscale * weight_table[i])
  289. * For 10-bit samples, p / s == 2 */
  290. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  291. (qscale * luma_weight_table[i]);
  292. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  293. (qscale * chroma_weight_table[i]);
  294. }
  295. }
  296. }
  297. ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
  298. ctx->m.q_chroma_intra_matrix = ctx->qmatrix_c;
  299. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  300. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  301. return 0;
  302. }
  303. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  304. {
  305. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.c.avctx->qmax + 1) * ctx->m.c.mb_num))
  306. return AVERROR(ENOMEM);
  307. if (ctx->m.c.avctx->mb_decision != FF_MB_DECISION_RD) {
  308. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp, ctx->m.c.mb_num) ||
  309. !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.c.mb_num))
  310. return AVERROR(ENOMEM);
  311. }
  312. ctx->frame_bits = (ctx->coding_unit_size -
  313. ctx->data_offset - 4 - ctx->min_padding) * 8;
  314. ctx->qscale = 1;
  315. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  316. return 0;
  317. }
  318. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  319. {
  320. DNXHDEncContext *ctx = avctx->priv_data;
  321. int i, ret;
  322. switch (avctx->pix_fmt) {
  323. case AV_PIX_FMT_YUV422P:
  324. ctx->bit_depth = 8;
  325. break;
  326. case AV_PIX_FMT_YUV422P10:
  327. case AV_PIX_FMT_YUV444P10:
  328. case AV_PIX_FMT_GBRP10:
  329. ctx->bit_depth = 10;
  330. break;
  331. }
  332. if ((ctx->profile == AV_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
  333. avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
  334. (ctx->profile != AV_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
  335. avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
  336. av_log(avctx, AV_LOG_ERROR,
  337. "pixel format is incompatible with DNxHD profile\n");
  338. return AVERROR(EINVAL);
  339. }
  340. if (ctx->profile == AV_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
  341. av_log(avctx, AV_LOG_ERROR,
  342. "pixel format is incompatible with DNxHR HQX profile\n");
  343. return AVERROR(EINVAL);
  344. }
  345. if ((ctx->profile == AV_PROFILE_DNXHR_LB ||
  346. ctx->profile == AV_PROFILE_DNXHR_SQ ||
  347. ctx->profile == AV_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
  348. av_log(avctx, AV_LOG_ERROR,
  349. "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
  350. return AVERROR(EINVAL);
  351. }
  352. ctx->is_444 = ctx->profile == AV_PROFILE_DNXHR_444;
  353. avctx->profile = ctx->profile;
  354. ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
  355. if (!ctx->cid) {
  356. av_log(avctx, AV_LOG_ERROR,
  357. "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
  358. ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
  359. return AVERROR(EINVAL);
  360. }
  361. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  362. if (ctx->cid >= 1270 && ctx->cid <= 1274)
  363. avctx->codec_tag = MKTAG('A','V','d','h');
  364. if (avctx->width < 256 || avctx->height < 120) {
  365. av_log(avctx, AV_LOG_ERROR,
  366. "Input dimensions too small, input must be at least 256x120\n");
  367. return AVERROR(EINVAL);
  368. }
  369. ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
  370. av_assert0(ctx->cid_table);
  371. ctx->m.c.avctx = avctx;
  372. ctx->m.c.mb_intra = 1;
  373. ctx->m.c.h263_aic = 1;
  374. avctx->bits_per_raw_sample = ctx->bit_depth;
  375. ff_blockdsp_init(&ctx->m.c.bdsp);
  376. ff_fdctdsp_init(&ctx->m.fdsp, avctx);
  377. ff_mpv_idct_init(&ctx->m.c);
  378. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  379. ff_pixblockdsp_init(&ctx->m.pdsp, ctx->bit_depth);
  380. ff_dct_encode_init(&ctx->m);
  381. if (ctx->profile != AV_PROFILE_DNXHD)
  382. ff_videodsp_init(&ctx->m.c.vdsp, ctx->bit_depth);
  383. if (ctx->is_444 || ctx->profile == AV_PROFILE_DNXHR_HQX) {
  384. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize_444;
  385. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  386. ctx->block_width_l2 = 4;
  387. } else if (ctx->bit_depth == 10) {
  388. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  389. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  390. ctx->block_width_l2 = 4;
  391. } else {
  392. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  393. ctx->block_width_l2 = 3;
  394. }
  395. ff_dnxhdenc_init(ctx);
  396. ctx->m.c.mb_height = (avctx->height + 15) / 16;
  397. ctx->m.c.mb_width = (avctx->width + 15) / 16;
  398. if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
  399. ctx->interlaced = 1;
  400. ctx->m.c.mb_height /= 2;
  401. }
  402. if (ctx->interlaced && ctx->profile != AV_PROFILE_DNXHD) {
  403. av_log(avctx, AV_LOG_ERROR,
  404. "Interlaced encoding is not supported for DNxHR profiles.\n");
  405. return AVERROR(EINVAL);
  406. }
  407. ctx->m.c.mb_num = ctx->m.c.mb_height * ctx->m.c.mb_width;
  408. if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
  409. ctx->frame_size = ff_dnxhd_get_hr_frame_size(ctx->cid,
  410. avctx->width, avctx->height);
  411. av_assert0(ctx->frame_size >= 0);
  412. ctx->coding_unit_size = ctx->frame_size;
  413. } else {
  414. ctx->frame_size = ctx->cid_table->frame_size;
  415. ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
  416. }
  417. if (ctx->m.c.mb_height > 68)
  418. ctx->data_offset = 0x170 + (ctx->m.c.mb_height << 2);
  419. else
  420. ctx->data_offset = 0x280;
  421. // XXX tune lbias/cbias
  422. if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
  423. return ret;
  424. /* Avid Nitris hardware decoder requires a minimum amount of padding
  425. * in the coding unit payload */
  426. if (ctx->nitris_compat)
  427. ctx->min_padding = 1600;
  428. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  429. return ret;
  430. if ((ret = dnxhd_init_rc(ctx)) < 0)
  431. return ret;
  432. if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.c.mb_height) ||
  433. !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.c.mb_height) ||
  434. !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits, ctx->m.c.mb_num) ||
  435. !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale, ctx->m.c.mb_num))
  436. return AVERROR(ENOMEM);
  437. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  438. if (avctx->thread_count > MAX_THREADS) {
  439. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  440. return AVERROR(EINVAL);
  441. }
  442. }
  443. if (avctx->qmax <= 1) {
  444. av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
  445. return AVERROR(EINVAL);
  446. }
  447. ctx->thread[0] = ctx;
  448. if (avctx->active_thread_type == FF_THREAD_SLICE) {
  449. for (i = 1; i < avctx->thread_count; i++) {
  450. ctx->thread[i] = av_memdup(ctx, sizeof(DNXHDEncContext));
  451. if (!ctx->thread[i])
  452. return AVERROR(ENOMEM);
  453. }
  454. }
  455. return 0;
  456. }
  457. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  458. {
  459. DNXHDEncContext *ctx = avctx->priv_data;
  460. memset(buf, 0, ctx->data_offset);
  461. // * write prefix */
  462. AV_WB16(buf + 0x02, ctx->data_offset);
  463. if (ctx->cid >= 1270 && ctx->cid <= 1274)
  464. buf[4] = 0x03;
  465. else
  466. buf[4] = 0x01;
  467. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  468. buf[6] = 0x80; // crc flag off
  469. buf[7] = 0xa0; // reserved
  470. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  471. AV_WB16(buf + 0x1a, avctx->width); // SPL
  472. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  473. buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
  474. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  475. AV_WB32(buf + 0x28, ctx->cid); // CID
  476. buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
  477. buf[0x5f] = 0x01; // UDL
  478. buf[0x167] = 0x02; // reserved
  479. AV_WB16(buf + 0x16a, ctx->m.c.mb_height * 4 + 4); // MSIPS
  480. AV_WB16(buf + 0x16c, ctx->m.c.mb_height); // Ns
  481. buf[0x16f] = 0x10; // reserved
  482. ctx->msip = buf + 0x170;
  483. return 0;
  484. }
  485. static av_always_inline void dnxhd_encode_dc(PutBitContext *pb, DNXHDEncContext *ctx, int diff)
  486. {
  487. int nbits;
  488. if (diff < 0) {
  489. nbits = av_log2_16bit(-2 * diff);
  490. diff--;
  491. } else {
  492. nbits = av_log2_16bit(2 * diff);
  493. }
  494. put_bits(pb, ctx->cid_table->dc_bits[nbits] + nbits,
  495. (ctx->cid_table->dc_codes[nbits] << nbits) +
  496. av_zero_extend(diff, nbits));
  497. }
  498. static av_always_inline
  499. void dnxhd_encode_block(PutBitContext *pb, DNXHDEncContext *ctx,
  500. int16_t *block, int last_index, int n)
  501. {
  502. int last_non_zero = 0;
  503. int slevel, i, j;
  504. dnxhd_encode_dc(pb, ctx, block[0] - ctx->m.last_dc[n]);
  505. ctx->m.last_dc[n] = block[0];
  506. for (i = 1; i <= last_index; i++) {
  507. j = ctx->m.c.intra_scantable.permutated[i];
  508. slevel = block[j];
  509. if (slevel) {
  510. int run_level = i - last_non_zero - 1;
  511. int rlevel = slevel * (1 << 1) | !!run_level;
  512. put_bits(pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  513. if (run_level)
  514. put_bits(pb, ctx->run_bits[run_level],
  515. ctx->run_codes[run_level]);
  516. last_non_zero = i;
  517. }
  518. }
  519. put_bits(pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  520. }
  521. static av_always_inline
  522. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  523. int qscale, int last_index)
  524. {
  525. const uint8_t *weight_matrix;
  526. int level;
  527. int i;
  528. if (ctx->is_444) {
  529. weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
  530. : ctx->cid_table->chroma_weight;
  531. } else {
  532. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  533. : ctx->cid_table->luma_weight;
  534. }
  535. for (i = 1; i <= last_index; i++) {
  536. int j = ctx->m.c.intra_scantable.permutated[i];
  537. level = block[j];
  538. if (level) {
  539. if (level < 0) {
  540. level = (1 - 2 * level) * qscale * weight_matrix[i];
  541. if (ctx->bit_depth == 10) {
  542. if (weight_matrix[i] != 8)
  543. level += 8;
  544. level >>= 4;
  545. } else {
  546. if (weight_matrix[i] != 32)
  547. level += 32;
  548. level >>= 6;
  549. }
  550. level = -level;
  551. } else {
  552. level = (2 * level + 1) * qscale * weight_matrix[i];
  553. if (ctx->bit_depth == 10) {
  554. if (weight_matrix[i] != 8)
  555. level += 8;
  556. level >>= 4;
  557. } else {
  558. if (weight_matrix[i] != 32)
  559. level += 32;
  560. level >>= 6;
  561. }
  562. }
  563. block[j] = level;
  564. }
  565. }
  566. }
  567. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  568. {
  569. int score = 0;
  570. int i;
  571. for (i = 0; i < 64; i++)
  572. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  573. return score;
  574. }
  575. static av_always_inline
  576. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  577. {
  578. int last_non_zero = 0;
  579. int bits = 0;
  580. int i, j, level;
  581. for (i = 1; i <= last_index; i++) {
  582. j = ctx->m.c.intra_scantable.permutated[i];
  583. level = block[j];
  584. if (level) {
  585. int run_level = i - last_non_zero - 1;
  586. bits += ctx->vlc_bits[level * (1 << 1) |
  587. !!run_level] + ctx->run_bits[run_level];
  588. last_non_zero = i;
  589. }
  590. }
  591. return bits;
  592. }
  593. static av_always_inline
  594. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  595. {
  596. const int bs = ctx->block_width_l2;
  597. const int bw = 1 << bs;
  598. int dct_y_offset = ctx->dct_y_offset;
  599. int dct_uv_offset = ctx->dct_uv_offset;
  600. int linesize = ctx->m.c.linesize;
  601. int uvlinesize = ctx->m.c.uvlinesize;
  602. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  603. ((mb_y << 4) * ctx->m.c.linesize) + (mb_x << bs + 1);
  604. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  605. ((mb_y << 4) * ctx->m.c.uvlinesize) + (mb_x << bs + ctx->is_444);
  606. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  607. ((mb_y << 4) * ctx->m.c.uvlinesize) + (mb_x << bs + ctx->is_444);
  608. PixblockDSPContext *pdsp = &ctx->m.pdsp;
  609. VideoDSPContext *vdsp = &ctx->m.c.vdsp;
  610. if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.c.avctx->width ||
  611. (mb_y << 4) + 16 > ctx->m.c.avctx->height)) {
  612. int y_w = ctx->m.c.avctx->width - (mb_x << 4);
  613. int y_h = ctx->m.c.avctx->height - (mb_y << 4);
  614. int uv_w = (y_w + 1) / 2;
  615. int uv_h = y_h;
  616. linesize = 16;
  617. uvlinesize = 8;
  618. vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
  619. linesize, ctx->m.c.linesize,
  620. linesize, 16,
  621. 0, 0, y_w, y_h);
  622. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
  623. uvlinesize, ctx->m.c.uvlinesize,
  624. uvlinesize, 16,
  625. 0, 0, uv_w, uv_h);
  626. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
  627. uvlinesize, ctx->m.c.uvlinesize,
  628. uvlinesize, 16,
  629. 0, 0, uv_w, uv_h);
  630. dct_y_offset = bw * linesize;
  631. dct_uv_offset = bw * uvlinesize;
  632. ptr_y = &ctx->edge_buf_y[0];
  633. ptr_u = &ctx->edge_buf_uv[0][0];
  634. ptr_v = &ctx->edge_buf_uv[1][0];
  635. } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.c.avctx->width ||
  636. (mb_y << 4) + 16 > ctx->m.c.avctx->height)) {
  637. int y_w = ctx->m.c.avctx->width - (mb_x << 4);
  638. int y_h = ctx->m.c.avctx->height - (mb_y << 4);
  639. int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
  640. int uv_h = y_h;
  641. linesize = 32;
  642. uvlinesize = 16 + 16 * ctx->is_444;
  643. vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
  644. linesize, ctx->m.c.linesize,
  645. linesize / 2, 16,
  646. 0, 0, y_w, y_h);
  647. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
  648. uvlinesize, ctx->m.c.uvlinesize,
  649. uvlinesize / 2, 16,
  650. 0, 0, uv_w, uv_h);
  651. vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
  652. uvlinesize, ctx->m.c.uvlinesize,
  653. uvlinesize / 2, 16,
  654. 0, 0, uv_w, uv_h);
  655. dct_y_offset = bw * linesize / 2;
  656. dct_uv_offset = bw * uvlinesize / 2;
  657. ptr_y = &ctx->edge_buf_y[0];
  658. ptr_u = &ctx->edge_buf_uv[0][0];
  659. ptr_v = &ctx->edge_buf_uv[1][0];
  660. }
  661. if (!ctx->is_444) {
  662. pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
  663. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
  664. pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
  665. pdsp->get_pixels(ctx->blocks[3], ptr_v, uvlinesize);
  666. if (mb_y + 1 == ctx->m.c.mb_height && ctx->m.c.avctx->height == 1080) {
  667. if (ctx->interlaced) {
  668. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  669. ptr_y + dct_y_offset,
  670. linesize);
  671. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  672. ptr_y + dct_y_offset + bw,
  673. linesize);
  674. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  675. ptr_u + dct_uv_offset,
  676. uvlinesize);
  677. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  678. ptr_v + dct_uv_offset,
  679. uvlinesize);
  680. } else {
  681. ctx->m.c.bdsp.clear_block(ctx->blocks[4]);
  682. ctx->m.c.bdsp.clear_block(ctx->blocks[5]);
  683. ctx->m.c.bdsp.clear_block(ctx->blocks[6]);
  684. ctx->m.c.bdsp.clear_block(ctx->blocks[7]);
  685. }
  686. } else {
  687. pdsp->get_pixels(ctx->blocks[4],
  688. ptr_y + dct_y_offset, linesize);
  689. pdsp->get_pixels(ctx->blocks[5],
  690. ptr_y + dct_y_offset + bw, linesize);
  691. pdsp->get_pixels(ctx->blocks[6],
  692. ptr_u + dct_uv_offset, uvlinesize);
  693. pdsp->get_pixels(ctx->blocks[7],
  694. ptr_v + dct_uv_offset, uvlinesize);
  695. }
  696. } else {
  697. pdsp->get_pixels(ctx->blocks[0], ptr_y, linesize);
  698. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
  699. pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
  700. pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
  701. pdsp->get_pixels(ctx->blocks[2], ptr_u, uvlinesize);
  702. pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
  703. pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
  704. pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
  705. pdsp->get_pixels(ctx->blocks[4], ptr_v, uvlinesize);
  706. pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
  707. pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
  708. pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
  709. }
  710. }
  711. static av_always_inline
  712. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  713. {
  714. int x;
  715. if (ctx->is_444) {
  716. x = (i >> 1) % 3;
  717. } else {
  718. const static uint8_t component[8]={0,0,1,2,0,0,1,2};
  719. x = component[i];
  720. }
  721. return x;
  722. }
  723. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  724. int jobnr, int threadnr)
  725. {
  726. DNXHDEncContext *ctx = avctx->priv_data;
  727. int mb_y = jobnr;
  728. int qscale = ctx->qscale;
  729. LOCAL_ALIGNED_16(int16_t, block, [64]);
  730. ctx = ctx->thread[threadnr];
  731. ctx->m.last_dc[0] =
  732. ctx->m.last_dc[1] =
  733. ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
  734. for (int mb_x = 0; mb_x < ctx->m.c.mb_width; mb_x++) {
  735. unsigned mb = mb_y * ctx->m.c.mb_width + mb_x;
  736. int ssd = 0;
  737. int ac_bits = 0;
  738. int dc_bits = 0;
  739. int i;
  740. dnxhd_get_blocks(ctx, mb_x, mb_y);
  741. for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
  742. int16_t *src_block = ctx->blocks[i];
  743. int overflow, nbits, diff, last_index;
  744. int n = dnxhd_switch_matrix(ctx, i);
  745. memcpy(block, src_block, 64 * sizeof(*block));
  746. last_index = ctx->m.dct_quantize(&ctx->m, block,
  747. ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
  748. qscale, &overflow);
  749. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  750. diff = block[0] - ctx->m.last_dc[n];
  751. if (diff < 0)
  752. nbits = av_log2_16bit(-2 * diff);
  753. else
  754. nbits = av_log2_16bit(2 * diff);
  755. av_assert1(nbits < ctx->bit_depth + 4);
  756. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  757. ctx->m.last_dc[n] = block[0];
  758. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  759. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  760. ctx->m.c.idsp.idct(block);
  761. ssd += dnxhd_ssd_block(block, src_block);
  762. }
  763. }
  764. ctx->mb_rc[(qscale * ctx->m.c.mb_num) + mb].ssd = ssd;
  765. ctx->mb_rc[(qscale * ctx->m.c.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
  766. (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
  767. }
  768. return 0;
  769. }
  770. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  771. int jobnr, int threadnr)
  772. {
  773. DNXHDEncContext *ctx = avctx->priv_data;
  774. PutBitContext pb0, *const pb = &pb0;
  775. int mb_y = jobnr;
  776. ctx = ctx->thread[threadnr];
  777. init_put_bits(pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
  778. ctx->slice_size[jobnr]);
  779. ctx->m.last_dc[0] =
  780. ctx->m.last_dc[1] =
  781. ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
  782. for (int mb_x = 0; mb_x < ctx->m.c.mb_width; mb_x++) {
  783. unsigned mb = mb_y * ctx->m.c.mb_width + mb_x;
  784. int qscale = ctx->mb_qscale[mb];
  785. int i;
  786. put_bits(pb, 11, qscale);
  787. put_bits(pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
  788. dnxhd_get_blocks(ctx, mb_x, mb_y);
  789. for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
  790. int16_t *block = ctx->blocks[i];
  791. int overflow, n = dnxhd_switch_matrix(ctx, i);
  792. int last_index = ctx->m.dct_quantize(&ctx->m, block,
  793. ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
  794. qscale, &overflow);
  795. dnxhd_encode_block(pb, ctx, block, last_index, n);
  796. }
  797. }
  798. flush_put_bits(pb);
  799. memset(put_bits_ptr(pb), 0, put_bytes_left(pb, 0));
  800. return 0;
  801. }
  802. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  803. {
  804. for (int mb_y = 0, offset = 0; mb_y < ctx->m.c.mb_height; mb_y++) {
  805. int thread_size;
  806. ctx->slice_offs[mb_y] = offset;
  807. ctx->slice_size[mb_y] = 0;
  808. for (int mb_x = 0; mb_x < ctx->m.c.mb_width; mb_x++) {
  809. unsigned mb = mb_y * ctx->m.c.mb_width + mb_x;
  810. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  811. }
  812. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31U) & ~31U;
  813. ctx->slice_size[mb_y] >>= 3;
  814. thread_size = ctx->slice_size[mb_y];
  815. offset += thread_size;
  816. }
  817. }
  818. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  819. int jobnr, int threadnr)
  820. {
  821. DNXHDEncContext *ctx = avctx->priv_data;
  822. int mb_y = jobnr, x, y;
  823. int partial_last_row = (mb_y == ctx->m.c.mb_height - 1) &&
  824. ((avctx->height >> ctx->interlaced) & 0xF);
  825. ctx = ctx->thread[threadnr];
  826. if (ctx->bit_depth == 8) {
  827. const uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.c.linesize);
  828. for (int mb_x = 0; mb_x < ctx->m.c.mb_width; ++mb_x, pix += 16) {
  829. unsigned mb = mb_y * ctx->m.c.mb_width + mb_x;
  830. int sum;
  831. int varc;
  832. if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
  833. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.c.linesize);
  834. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.c.linesize);
  835. } else {
  836. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  837. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  838. sum = varc = 0;
  839. for (y = 0; y < bh; y++) {
  840. for (x = 0; x < bw; x++) {
  841. uint8_t val = pix[x + y * ctx->m.c.linesize];
  842. sum += val;
  843. varc += val * val;
  844. }
  845. }
  846. }
  847. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  848. ctx->mb_cmp[mb].value = varc;
  849. ctx->mb_cmp[mb].mb = mb;
  850. }
  851. } else { // 10-bit
  852. const int linesize = ctx->m.c.linesize >> 1;
  853. for (int mb_x = 0; mb_x < ctx->m.c.mb_width; ++mb_x) {
  854. const uint16_t *pix = (const uint16_t *)ctx->thread[0]->src[0] +
  855. ((mb_y << 4) * linesize) + (mb_x << 4);
  856. unsigned mb = mb_y * ctx->m.c.mb_width + mb_x;
  857. int sum = 0;
  858. int sqsum = 0;
  859. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  860. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  861. int mean, sqmean;
  862. int i, j;
  863. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  864. for (i = 0; i < bh; ++i) {
  865. for (j = 0; j < bw; ++j) {
  866. // Turn 16-bit pixels into 10-bit ones.
  867. const int sample = (unsigned) pix[j] >> 6;
  868. sum += sample;
  869. sqsum += sample * sample;
  870. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  871. }
  872. pix += linesize;
  873. }
  874. mean = sum >> 8; // 16*16 == 2^8
  875. sqmean = sqsum >> 8;
  876. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  877. ctx->mb_cmp[mb].mb = mb;
  878. }
  879. }
  880. return 0;
  881. }
  882. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  883. {
  884. int lambda, up_step, down_step;
  885. int last_lower = INT_MAX, last_higher = 0;
  886. for (int q = 1; q < avctx->qmax; q++) {
  887. ctx->qscale = q;
  888. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  889. NULL, NULL, ctx->m.c.mb_height);
  890. }
  891. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  892. lambda = ctx->lambda;
  893. for (;;) {
  894. int bits = 0;
  895. int end = 0;
  896. if (lambda == last_higher) {
  897. lambda++;
  898. end = 1; // need to set final qscales/bits
  899. }
  900. for (int y = 0; y < ctx->m.c.mb_height; y++) {
  901. for (int x = 0; x < ctx->m.c.mb_width; x++) {
  902. unsigned min = UINT_MAX;
  903. int qscale = 1;
  904. int mb = y * ctx->m.c.mb_width + x;
  905. int rc = 0;
  906. for (int q = 1; q < avctx->qmax; q++) {
  907. int i = (q*ctx->m.c.mb_num) + mb;
  908. unsigned score = ctx->mb_rc[i].bits * lambda +
  909. ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
  910. if (score < min) {
  911. min = score;
  912. qscale = q;
  913. rc = i;
  914. }
  915. }
  916. bits += ctx->mb_rc[rc].bits;
  917. ctx->mb_qscale[mb] = qscale;
  918. ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
  919. }
  920. bits = (bits + 31) & ~31; // padding
  921. if (bits > ctx->frame_bits)
  922. break;
  923. }
  924. if (end) {
  925. if (bits > ctx->frame_bits)
  926. return AVERROR(EINVAL);
  927. break;
  928. }
  929. if (bits < ctx->frame_bits) {
  930. last_lower = FFMIN(lambda, last_lower);
  931. if (last_higher != 0)
  932. lambda = (lambda+last_higher)>>1;
  933. else
  934. lambda -= down_step;
  935. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  936. up_step = 1<<LAMBDA_FRAC_BITS;
  937. lambda = FFMAX(1, lambda);
  938. if (lambda == last_lower)
  939. break;
  940. } else {
  941. last_higher = FFMAX(lambda, last_higher);
  942. if (last_lower != INT_MAX)
  943. lambda = (lambda+last_lower)>>1;
  944. else if ((int64_t)lambda + up_step > INT_MAX)
  945. return AVERROR(EINVAL);
  946. else
  947. lambda += up_step;
  948. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  949. down_step = 1<<LAMBDA_FRAC_BITS;
  950. }
  951. }
  952. ctx->lambda = lambda;
  953. return 0;
  954. }
  955. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  956. {
  957. int bits = 0;
  958. int up_step = 1;
  959. int down_step = 1;
  960. int last_higher = 0;
  961. int last_lower = INT_MAX;
  962. int qscale;
  963. qscale = ctx->qscale;
  964. for (;;) {
  965. bits = 0;
  966. ctx->qscale = qscale;
  967. // XXX avoid recalculating bits
  968. ctx->m.c.avctx->execute2(ctx->m.c.avctx, dnxhd_calc_bits_thread,
  969. NULL, NULL, ctx->m.c.mb_height);
  970. for (int y = 0; y < ctx->m.c.mb_height; y++) {
  971. for (int x = 0; x < ctx->m.c.mb_width; x++)
  972. bits += ctx->mb_rc[(qscale*ctx->m.c.mb_num) + (y*ctx->m.c.mb_width+x)].bits;
  973. bits = (bits+31)&~31; // padding
  974. if (bits > ctx->frame_bits)
  975. break;
  976. }
  977. if (bits < ctx->frame_bits) {
  978. if (qscale == 1)
  979. return 1;
  980. if (last_higher == qscale - 1) {
  981. qscale = last_higher;
  982. break;
  983. }
  984. last_lower = FFMIN(qscale, last_lower);
  985. if (last_higher != 0)
  986. qscale = (qscale + last_higher) >> 1;
  987. else
  988. qscale -= down_step++;
  989. if (qscale < 1)
  990. qscale = 1;
  991. up_step = 1;
  992. } else {
  993. if (last_lower == qscale + 1)
  994. break;
  995. last_higher = FFMAX(qscale, last_higher);
  996. if (last_lower != INT_MAX)
  997. qscale = (qscale + last_lower) >> 1;
  998. else
  999. qscale += up_step++;
  1000. down_step = 1;
  1001. if (qscale >= ctx->m.c.avctx->qmax)
  1002. return AVERROR(EINVAL);
  1003. }
  1004. }
  1005. ctx->qscale = qscale;
  1006. return 0;
  1007. }
  1008. #define BUCKET_BITS 8
  1009. #define RADIX_PASSES 4
  1010. #define NBUCKETS (1 << BUCKET_BITS)
  1011. static inline int get_bucket(int value, int shift)
  1012. {
  1013. value >>= shift;
  1014. value &= NBUCKETS - 1;
  1015. return NBUCKETS - 1 - value;
  1016. }
  1017. static void radix_count(const RCCMPEntry *data, int size,
  1018. int buckets[RADIX_PASSES][NBUCKETS])
  1019. {
  1020. int i, j;
  1021. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  1022. for (i = 0; i < size; i++) {
  1023. int v = data[i].value;
  1024. for (j = 0; j < RADIX_PASSES; j++) {
  1025. buckets[j][get_bucket(v, 0)]++;
  1026. v >>= BUCKET_BITS;
  1027. }
  1028. av_assert1(!v);
  1029. }
  1030. for (j = 0; j < RADIX_PASSES; j++) {
  1031. int offset = size;
  1032. for (i = NBUCKETS - 1; i >= 0; i--)
  1033. buckets[j][i] = offset -= buckets[j][i];
  1034. av_assert1(!buckets[j][0]);
  1035. }
  1036. }
  1037. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  1038. int size, int buckets[NBUCKETS], int pass)
  1039. {
  1040. int shift = pass * BUCKET_BITS;
  1041. int i;
  1042. for (i = 0; i < size; i++) {
  1043. int v = get_bucket(data[i].value, shift);
  1044. int pos = buckets[v]++;
  1045. dst[pos] = data[i];
  1046. }
  1047. }
  1048. static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
  1049. {
  1050. int buckets[RADIX_PASSES][NBUCKETS];
  1051. radix_count(data, size, buckets);
  1052. radix_sort_pass(tmp, data, size, buckets[0], 0);
  1053. radix_sort_pass(data, tmp, size, buckets[1], 1);
  1054. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  1055. radix_sort_pass(tmp, data, size, buckets[2], 2);
  1056. radix_sort_pass(data, tmp, size, buckets[3], 3);
  1057. }
  1058. }
  1059. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  1060. {
  1061. int max_bits = 0;
  1062. int ret;
  1063. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  1064. return ret;
  1065. for (int y = 0; y < ctx->m.c.mb_height; y++) {
  1066. for (int x = 0; x < ctx->m.c.mb_width; x++) {
  1067. int mb = y * ctx->m.c.mb_width + x;
  1068. int rc = (ctx->qscale * ctx->m.c.mb_num ) + mb;
  1069. int delta_bits;
  1070. ctx->mb_qscale[mb] = ctx->qscale;
  1071. ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
  1072. max_bits += ctx->mb_rc[rc].bits;
  1073. if (!RC_VARIANCE) {
  1074. delta_bits = ctx->mb_rc[rc].bits -
  1075. ctx->mb_rc[rc + ctx->m.c.mb_num].bits;
  1076. ctx->mb_cmp[mb].mb = mb;
  1077. ctx->mb_cmp[mb].value =
  1078. delta_bits ? ((ctx->mb_rc[rc].ssd -
  1079. ctx->mb_rc[rc + ctx->m.c.mb_num].ssd) * 100) /
  1080. delta_bits
  1081. : INT_MIN; // avoid increasing qscale
  1082. }
  1083. }
  1084. max_bits += 31; // worst padding
  1085. }
  1086. if (!ret) {
  1087. if (RC_VARIANCE)
  1088. avctx->execute2(avctx, dnxhd_mb_var_thread,
  1089. NULL, NULL, ctx->m.c.mb_height);
  1090. radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.c.mb_num);
  1091. retry:
  1092. for (int x = 0; x < ctx->m.c.mb_num && max_bits > ctx->frame_bits; x++) {
  1093. int mb = ctx->mb_cmp[x].mb;
  1094. int rc = (ctx->qscale * ctx->m.c.mb_num ) + mb;
  1095. max_bits -= ctx->mb_rc[rc].bits -
  1096. ctx->mb_rc[rc + ctx->m.c.mb_num].bits;
  1097. if (ctx->mb_qscale[mb] < 255)
  1098. ctx->mb_qscale[mb]++;
  1099. ctx->mb_bits[mb] = ctx->mb_rc[rc + ctx->m.c.mb_num].bits;
  1100. }
  1101. if (max_bits > ctx->frame_bits)
  1102. goto retry;
  1103. }
  1104. return 0;
  1105. }
  1106. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  1107. {
  1108. for (int i = 0; i < ctx->m.c.avctx->thread_count; i++) {
  1109. ctx->thread[i]->m.c.linesize = frame->linesize[0] << ctx->interlaced;
  1110. ctx->thread[i]->m.c.uvlinesize = frame->linesize[1] << ctx->interlaced;
  1111. ctx->thread[i]->dct_y_offset = ctx->m.c.linesize *8;
  1112. ctx->thread[i]->dct_uv_offset = ctx->m.c.uvlinesize*8;
  1113. }
  1114. ctx->cur_field = (frame->flags & AV_FRAME_FLAG_INTERLACED) &&
  1115. !(frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST);
  1116. }
  1117. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  1118. const AVFrame *frame, int *got_packet)
  1119. {
  1120. DNXHDEncContext *ctx = avctx->priv_data;
  1121. int first_field = 1;
  1122. int offset, i, ret;
  1123. uint8_t *buf;
  1124. if ((ret = ff_get_encode_buffer(avctx, pkt, ctx->frame_size, 0)) < 0)
  1125. return ret;
  1126. buf = pkt->data;
  1127. dnxhd_load_picture(ctx, frame);
  1128. encode_coding_unit:
  1129. for (i = 0; i < 3; i++) {
  1130. ctx->src[i] = frame->data[i];
  1131. if (ctx->interlaced && ctx->cur_field)
  1132. ctx->src[i] += frame->linesize[i];
  1133. }
  1134. dnxhd_write_header(avctx, buf);
  1135. if (avctx->mb_decision == FF_MB_DECISION_RD)
  1136. ret = dnxhd_encode_rdo(avctx, ctx);
  1137. else
  1138. ret = dnxhd_encode_fast(avctx, ctx);
  1139. if (ret < 0) {
  1140. av_log(avctx, AV_LOG_ERROR,
  1141. "picture could not fit ratecontrol constraints, increase qmax\n");
  1142. return ret;
  1143. }
  1144. dnxhd_setup_threads_slices(ctx);
  1145. offset = 0;
  1146. for (i = 0; i < ctx->m.c.mb_height; i++) {
  1147. AV_WB32(ctx->msip + i * 4, offset);
  1148. offset += ctx->slice_size[i];
  1149. av_assert1(!(ctx->slice_size[i] & 3));
  1150. }
  1151. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.c.mb_height);
  1152. av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
  1153. memset(buf + ctx->data_offset + offset, 0,
  1154. ctx->coding_unit_size - 4 - offset - ctx->data_offset);
  1155. AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
  1156. if (ctx->interlaced && first_field) {
  1157. first_field = 0;
  1158. ctx->cur_field ^= 1;
  1159. buf += ctx->coding_unit_size;
  1160. goto encode_coding_unit;
  1161. }
  1162. ff_encode_add_stats_side_data(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
  1163. *got_packet = 1;
  1164. return 0;
  1165. }
  1166. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  1167. {
  1168. DNXHDEncContext *ctx = avctx->priv_data;
  1169. int i;
  1170. av_freep(&ctx->orig_vlc_codes);
  1171. av_freep(&ctx->orig_vlc_bits);
  1172. av_freep(&ctx->run_codes);
  1173. av_freep(&ctx->run_bits);
  1174. av_freep(&ctx->mb_bits);
  1175. av_freep(&ctx->mb_qscale);
  1176. av_freep(&ctx->mb_rc);
  1177. av_freep(&ctx->mb_cmp);
  1178. av_freep(&ctx->mb_cmp_tmp);
  1179. av_freep(&ctx->slice_size);
  1180. av_freep(&ctx->slice_offs);
  1181. av_freep(&ctx->qmatrix_c);
  1182. av_freep(&ctx->qmatrix_l);
  1183. av_freep(&ctx->qmatrix_c16);
  1184. av_freep(&ctx->qmatrix_l16);
  1185. if (ctx->thread[1]) {
  1186. for (i = 1; i < avctx->thread_count; i++)
  1187. av_freep(&ctx->thread[i]);
  1188. }
  1189. return 0;
  1190. }
  1191. static const FFCodecDefault dnxhd_defaults[] = {
  1192. { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
  1193. { NULL },
  1194. };
  1195. const FFCodec ff_dnxhd_encoder = {
  1196. .p.name = "dnxhd",
  1197. CODEC_LONG_NAME("VC3/DNxHD"),
  1198. .p.type = AVMEDIA_TYPE_VIDEO,
  1199. .p.id = AV_CODEC_ID_DNXHD,
  1200. .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
  1201. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
  1202. .priv_data_size = sizeof(DNXHDEncContext),
  1203. .init = dnxhd_encode_init,
  1204. FF_CODEC_ENCODE_CB(dnxhd_encode_picture),
  1205. .close = dnxhd_encode_end,
  1206. CODEC_PIXFMTS(AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV422P10,
  1207. AV_PIX_FMT_YUV444P10, AV_PIX_FMT_GBRP10),
  1208. .color_ranges = AVCOL_RANGE_MPEG,
  1209. .p.priv_class = &dnxhd_class,
  1210. .defaults = dnxhd_defaults,
  1211. .p.profiles = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
  1212. .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
  1213. };
  1214. void ff_dnxhdenc_init(DNXHDEncContext *ctx)
  1215. {
  1216. #if ARCH_X86
  1217. ff_dnxhdenc_init_x86(ctx);
  1218. #endif
  1219. }