mpegaudiodec_template.c 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901
  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * MPEG Audio decoder
  24. */
  25. #include "config_components.h"
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/avassert.h"
  28. #include "libavutil/channel_layout.h"
  29. #include "libavutil/crc.h"
  30. #include "libavutil/float_dsp.h"
  31. #include "libavutil/libm.h"
  32. #include "libavutil/mem.h"
  33. #include "libavutil/mem_internal.h"
  34. #include "libavutil/thread.h"
  35. #include "avcodec.h"
  36. #include "decode.h"
  37. #include "get_bits.h"
  38. #include "mathops.h"
  39. #include "mpegaudiodsp.h"
  40. /*
  41. * TODO:
  42. * - test lsf / mpeg25 extensively.
  43. */
  44. #include "mpegaudio.h"
  45. #include "mpegaudiodecheader.h"
  46. #define BACKSTEP_SIZE 512
  47. #define EXTRABYTES 24
  48. #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
  49. /* layer 3 "granule" */
  50. typedef struct GranuleDef {
  51. uint8_t scfsi;
  52. int part2_3_length;
  53. int big_values;
  54. int global_gain;
  55. int scalefac_compress;
  56. uint8_t block_type;
  57. uint8_t switch_point;
  58. int table_select[3];
  59. int subblock_gain[3];
  60. uint8_t scalefac_scale;
  61. uint8_t count1table_select;
  62. int region_size[3]; /* number of huffman codes in each region */
  63. int preflag;
  64. int short_start, long_end; /* long/short band indexes */
  65. uint8_t scale_factors[40];
  66. DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
  67. } GranuleDef;
  68. typedef struct MPADecodeContext {
  69. MPA_DECODE_HEADER
  70. uint8_t last_buf[LAST_BUF_SIZE];
  71. int last_buf_size;
  72. int extrasize;
  73. /* next header (used in free format parsing) */
  74. uint32_t free_format_next_header;
  75. GetBitContext gb;
  76. GetBitContext in_gb;
  77. DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
  78. int synth_buf_offset[MPA_MAX_CHANNELS];
  79. DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
  80. INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  81. GranuleDef granules[2][2]; /* Used in Layer 3 */
  82. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  83. int dither_state;
  84. int err_recognition;
  85. AVCodecContext* avctx;
  86. MPADSPContext mpadsp;
  87. void (*butterflies_float)(float *restrict v1, float *restrict v2, int len);
  88. AVFrame *frame;
  89. uint32_t crc;
  90. } MPADecodeContext;
  91. #define HEADER_SIZE 4
  92. #include "mpegaudiodata.h"
  93. #include "mpegaudio_tablegen.h"
  94. /* intensity stereo coef table */
  95. static INTFLOAT is_table_lsf[2][2][16];
  96. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  97. static int32_t scale_factor_mult[15][3];
  98. /* mult table for layer 2 group quantization */
  99. #define SCALE_GEN(v) \
  100. { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
  101. static const int32_t scale_factor_mult2[3][3] = {
  102. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  103. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  104. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  105. };
  106. /**
  107. * Convert region offsets to region sizes and truncate
  108. * size to big_values.
  109. */
  110. static void region_offset2size(GranuleDef *g)
  111. {
  112. int i, k, j = 0;
  113. g->region_size[2] = 576 / 2;
  114. for (i = 0; i < 3; i++) {
  115. k = FFMIN(g->region_size[i], g->big_values);
  116. g->region_size[i] = k - j;
  117. j = k;
  118. }
  119. }
  120. static void init_short_region(MPADecodeContext *s, GranuleDef *g)
  121. {
  122. if (g->block_type == 2) {
  123. if (s->sample_rate_index != 8)
  124. g->region_size[0] = (36 / 2);
  125. else
  126. g->region_size[0] = (72 / 2);
  127. } else {
  128. if (s->sample_rate_index <= 2)
  129. g->region_size[0] = (36 / 2);
  130. else if (s->sample_rate_index != 8)
  131. g->region_size[0] = (54 / 2);
  132. else
  133. g->region_size[0] = (108 / 2);
  134. }
  135. g->region_size[1] = (576 / 2);
  136. }
  137. static void init_long_region(MPADecodeContext *s, GranuleDef *g,
  138. int ra1, int ra2)
  139. {
  140. int l;
  141. g->region_size[0] = ff_band_index_long[s->sample_rate_index][ra1 + 1];
  142. /* should not overflow */
  143. l = FFMIN(ra1 + ra2 + 2, 22);
  144. g->region_size[1] = ff_band_index_long[s->sample_rate_index][ l];
  145. }
  146. static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
  147. {
  148. if (g->block_type == 2) {
  149. if (g->switch_point) {
  150. if(s->sample_rate_index == 8)
  151. avpriv_request_sample(s->avctx, "switch point in 8khz");
  152. /* if switched mode, we handle the 36 first samples as
  153. long blocks. For 8000Hz, we handle the 72 first
  154. exponents as long blocks */
  155. if (s->sample_rate_index <= 2)
  156. g->long_end = 8;
  157. else
  158. g->long_end = 6;
  159. g->short_start = 3;
  160. } else {
  161. g->long_end = 0;
  162. g->short_start = 0;
  163. }
  164. } else {
  165. g->short_start = 13;
  166. g->long_end = 22;
  167. }
  168. }
  169. /* layer 1 unscaling */
  170. /* n = number of bits of the mantissa minus 1 */
  171. static inline int l1_unscale(int n, int mant, int scale_factor)
  172. {
  173. int shift, mod;
  174. int64_t val;
  175. shift = ff_scale_factor_modshift[scale_factor];
  176. mod = shift & 3;
  177. shift >>= 2;
  178. val = MUL64((int)(mant + (-1U << n) + 1), scale_factor_mult[n-1][mod]);
  179. shift += n;
  180. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  181. return (int)((val + (1LL << (shift - 1))) >> shift);
  182. }
  183. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  184. {
  185. int shift, mod, val;
  186. shift = ff_scale_factor_modshift[scale_factor];
  187. mod = shift & 3;
  188. shift >>= 2;
  189. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  190. /* NOTE: at this point, 0 <= shift <= 21 */
  191. if (shift > 0)
  192. val = (val + (1 << (shift - 1))) >> shift;
  193. return val;
  194. }
  195. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  196. static inline int l3_unscale(int value, int exponent)
  197. {
  198. unsigned int m;
  199. int e;
  200. e = ff_table_4_3_exp [4 * value + (exponent & 3)];
  201. m = ff_table_4_3_value[4 * value + (exponent & 3)];
  202. e -= exponent >> 2;
  203. #ifdef DEBUG
  204. if(e < 1)
  205. av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
  206. #endif
  207. if (e > (SUINT)31)
  208. return 0;
  209. m = (m + ((1U << e) >> 1)) >> e;
  210. return m;
  211. }
  212. static av_cold void decode_init_static(void)
  213. {
  214. int i, j;
  215. /* scale factor multiply for layer 1 */
  216. for (i = 0; i < 15; i++) {
  217. int n, norm;
  218. n = i + 2;
  219. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  220. scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
  221. scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
  222. scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
  223. ff_dlog(NULL, "%d: norm=%x s=%"PRIx32" %"PRIx32" %"PRIx32"\n", i,
  224. (unsigned)norm,
  225. scale_factor_mult[i][0],
  226. scale_factor_mult[i][1],
  227. scale_factor_mult[i][2]);
  228. }
  229. /* compute n ^ (4/3) and store it in mantissa/exp format */
  230. mpegaudio_tableinit();
  231. for (i = 0; i < 16; i++) {
  232. double f;
  233. int e, k;
  234. for (j = 0; j < 2; j++) {
  235. e = -(j + 1) * ((i + 1) >> 1);
  236. f = exp2(e / 4.0);
  237. k = i & 1;
  238. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  239. is_table_lsf[j][k ][i] = FIXR(1.0);
  240. ff_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
  241. i, j, (float) is_table_lsf[j][0][i],
  242. (float) is_table_lsf[j][1][i]);
  243. }
  244. }
  245. RENAME(ff_mpa_synth_init)();
  246. ff_mpegaudiodec_common_init_static();
  247. }
  248. static av_cold int decode_init(AVCodecContext * avctx)
  249. {
  250. static AVOnce init_static_once = AV_ONCE_INIT;
  251. MPADecodeContext *s = avctx->priv_data;
  252. s->avctx = avctx;
  253. #if USE_FLOATS
  254. {
  255. AVFloatDSPContext *fdsp;
  256. fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
  257. if (!fdsp)
  258. return AVERROR(ENOMEM);
  259. s->butterflies_float = fdsp->butterflies_float;
  260. av_free(fdsp);
  261. }
  262. #endif
  263. ff_mpadsp_init(&s->mpadsp);
  264. if (avctx->request_sample_fmt == OUT_FMT &&
  265. avctx->codec_id != AV_CODEC_ID_MP3ON4)
  266. avctx->sample_fmt = OUT_FMT;
  267. else
  268. avctx->sample_fmt = OUT_FMT_P;
  269. s->err_recognition = avctx->err_recognition;
  270. if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
  271. s->adu_mode = 1;
  272. ff_thread_once(&init_static_once, decode_init_static);
  273. return 0;
  274. }
  275. #define C3 FIXHR(0.86602540378443864676/2)
  276. #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
  277. #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
  278. #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
  279. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  280. cases. */
  281. static void imdct12(INTFLOAT *out, SUINTFLOAT *in)
  282. {
  283. SUINTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
  284. in0 = in[0*3];
  285. in1 = in[1*3] + in[0*3];
  286. in2 = in[2*3] + in[1*3];
  287. in3 = in[3*3] + in[2*3];
  288. in4 = in[4*3] + in[3*3];
  289. in5 = in[5*3] + in[4*3];
  290. in5 += in3;
  291. in3 += in1;
  292. in2 = MULH3(in2, C3, 2);
  293. in3 = MULH3(in3, C3, 4);
  294. t1 = in0 - in4;
  295. t2 = MULH3(in1 - in5, C4, 2);
  296. out[ 7] =
  297. out[10] = t1 + t2;
  298. out[ 1] =
  299. out[ 4] = t1 - t2;
  300. in0 += SHR(in4, 1);
  301. in4 = in0 + in2;
  302. in5 += 2*in1;
  303. in1 = MULH3(in5 + in3, C5, 1);
  304. out[ 8] =
  305. out[ 9] = in4 + in1;
  306. out[ 2] =
  307. out[ 3] = in4 - in1;
  308. in0 -= in2;
  309. in5 = MULH3(in5 - in3, C6, 2);
  310. out[ 0] =
  311. out[ 5] = in0 - in5;
  312. out[ 6] =
  313. out[11] = in0 + in5;
  314. }
  315. static int handle_crc(MPADecodeContext *s, int sec_len)
  316. {
  317. if (s->error_protection && (s->err_recognition & AV_EF_CRCCHECK)) {
  318. const uint8_t *buf = s->gb.buffer - HEADER_SIZE;
  319. int sec_byte_len = sec_len >> 3;
  320. int sec_rem_bits = sec_len & 7;
  321. const AVCRC *crc_tab = av_crc_get_table(AV_CRC_16_ANSI);
  322. uint8_t tmp_buf[4];
  323. uint32_t crc_val = av_crc(crc_tab, UINT16_MAX, &buf[2], 2);
  324. crc_val = av_crc(crc_tab, crc_val, &buf[6], sec_byte_len);
  325. AV_WB32(tmp_buf,
  326. ((buf[6 + sec_byte_len] & (0xFF00U >> sec_rem_bits)) << 24) +
  327. ((s->crc << 16) >> sec_rem_bits));
  328. crc_val = av_crc(crc_tab, crc_val, tmp_buf, 3);
  329. if (crc_val) {
  330. av_log(s->avctx, AV_LOG_ERROR, "CRC mismatch %X!\n", crc_val);
  331. if (s->err_recognition & AV_EF_EXPLODE)
  332. return AVERROR_INVALIDDATA;
  333. }
  334. }
  335. return 0;
  336. }
  337. /* return the number of decoded frames */
  338. static int mp_decode_layer1(MPADecodeContext *s)
  339. {
  340. int bound, i, v, n, ch, j, mant;
  341. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  342. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  343. int ret;
  344. ret = handle_crc(s, (s->nb_channels == 1) ? 8*16 : 8*32);
  345. if (ret < 0)
  346. return ret;
  347. if (s->mode == MPA_JSTEREO)
  348. bound = (s->mode_ext + 1) * 4;
  349. else
  350. bound = SBLIMIT;
  351. /* allocation bits */
  352. for (i = 0; i < bound; i++) {
  353. for (ch = 0; ch < s->nb_channels; ch++) {
  354. allocation[ch][i] = get_bits(&s->gb, 4);
  355. }
  356. }
  357. for (i = bound; i < SBLIMIT; i++)
  358. allocation[0][i] = get_bits(&s->gb, 4);
  359. /* scale factors */
  360. for (i = 0; i < bound; i++) {
  361. for (ch = 0; ch < s->nb_channels; ch++) {
  362. if (allocation[ch][i])
  363. scale_factors[ch][i] = get_bits(&s->gb, 6);
  364. }
  365. }
  366. for (i = bound; i < SBLIMIT; i++) {
  367. if (allocation[0][i]) {
  368. scale_factors[0][i] = get_bits(&s->gb, 6);
  369. scale_factors[1][i] = get_bits(&s->gb, 6);
  370. }
  371. }
  372. /* compute samples */
  373. for (j = 0; j < 12; j++) {
  374. for (i = 0; i < bound; i++) {
  375. for (ch = 0; ch < s->nb_channels; ch++) {
  376. n = allocation[ch][i];
  377. if (n) {
  378. mant = get_bits(&s->gb, n + 1);
  379. v = l1_unscale(n, mant, scale_factors[ch][i]);
  380. } else {
  381. v = 0;
  382. }
  383. s->sb_samples[ch][j][i] = v;
  384. }
  385. }
  386. for (i = bound; i < SBLIMIT; i++) {
  387. n = allocation[0][i];
  388. if (n) {
  389. mant = get_bits(&s->gb, n + 1);
  390. v = l1_unscale(n, mant, scale_factors[0][i]);
  391. s->sb_samples[0][j][i] = v;
  392. v = l1_unscale(n, mant, scale_factors[1][i]);
  393. s->sb_samples[1][j][i] = v;
  394. } else {
  395. s->sb_samples[0][j][i] = 0;
  396. s->sb_samples[1][j][i] = 0;
  397. }
  398. }
  399. }
  400. return 12;
  401. }
  402. static int mp_decode_layer2(MPADecodeContext *s)
  403. {
  404. int sblimit; /* number of used subbands */
  405. const unsigned char *alloc_table;
  406. int table, bit_alloc_bits, i, j, ch, bound, v;
  407. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  408. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  409. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  410. int scale, qindex, bits, steps, k, l, m, b;
  411. int ret;
  412. /* select decoding table */
  413. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  414. s->sample_rate, s->lsf);
  415. sblimit = ff_mpa_sblimit_table[table];
  416. alloc_table = ff_mpa_alloc_tables[table];
  417. if (s->mode == MPA_JSTEREO)
  418. bound = (s->mode_ext + 1) * 4;
  419. else
  420. bound = sblimit;
  421. ff_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  422. /* sanity check */
  423. if (bound > sblimit)
  424. bound = sblimit;
  425. /* parse bit allocation */
  426. j = 0;
  427. for (i = 0; i < bound; i++) {
  428. bit_alloc_bits = alloc_table[j];
  429. for (ch = 0; ch < s->nb_channels; ch++)
  430. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  431. j += 1 << bit_alloc_bits;
  432. }
  433. for (i = bound; i < sblimit; i++) {
  434. bit_alloc_bits = alloc_table[j];
  435. v = get_bits(&s->gb, bit_alloc_bits);
  436. bit_alloc[0][i] = v;
  437. bit_alloc[1][i] = v;
  438. j += 1 << bit_alloc_bits;
  439. }
  440. /* scale codes */
  441. for (i = 0; i < sblimit; i++) {
  442. for (ch = 0; ch < s->nb_channels; ch++) {
  443. if (bit_alloc[ch][i])
  444. scale_code[ch][i] = get_bits(&s->gb, 2);
  445. }
  446. }
  447. ret = handle_crc(s, get_bits_count(&s->gb) - 16);
  448. if (ret < 0)
  449. return ret;
  450. /* scale factors */
  451. for (i = 0; i < sblimit; i++) {
  452. for (ch = 0; ch < s->nb_channels; ch++) {
  453. if (bit_alloc[ch][i]) {
  454. sf = scale_factors[ch][i];
  455. switch (scale_code[ch][i]) {
  456. default:
  457. case 0:
  458. sf[0] = get_bits(&s->gb, 6);
  459. sf[1] = get_bits(&s->gb, 6);
  460. sf[2] = get_bits(&s->gb, 6);
  461. break;
  462. case 2:
  463. sf[0] = get_bits(&s->gb, 6);
  464. sf[1] = sf[0];
  465. sf[2] = sf[0];
  466. break;
  467. case 1:
  468. sf[0] = get_bits(&s->gb, 6);
  469. sf[2] = get_bits(&s->gb, 6);
  470. sf[1] = sf[0];
  471. break;
  472. case 3:
  473. sf[0] = get_bits(&s->gb, 6);
  474. sf[2] = get_bits(&s->gb, 6);
  475. sf[1] = sf[2];
  476. break;
  477. }
  478. }
  479. }
  480. }
  481. /* samples */
  482. for (k = 0; k < 3; k++) {
  483. for (l = 0; l < 12; l += 3) {
  484. j = 0;
  485. for (i = 0; i < bound; i++) {
  486. bit_alloc_bits = alloc_table[j];
  487. for (ch = 0; ch < s->nb_channels; ch++) {
  488. b = bit_alloc[ch][i];
  489. if (b) {
  490. scale = scale_factors[ch][i][k];
  491. qindex = alloc_table[j+b];
  492. bits = ff_mpa_quant_bits[qindex];
  493. if (bits < 0) {
  494. int v2;
  495. /* 3 values at the same time */
  496. v = get_bits(&s->gb, -bits);
  497. v2 = ff_division_tabs[qindex][v];
  498. steps = ff_mpa_quant_steps[qindex];
  499. s->sb_samples[ch][k * 12 + l + 0][i] =
  500. l2_unscale_group(steps, v2 & 15, scale);
  501. s->sb_samples[ch][k * 12 + l + 1][i] =
  502. l2_unscale_group(steps, (v2 >> 4) & 15, scale);
  503. s->sb_samples[ch][k * 12 + l + 2][i] =
  504. l2_unscale_group(steps, v2 >> 8 , scale);
  505. } else {
  506. for (m = 0; m < 3; m++) {
  507. v = get_bits(&s->gb, bits);
  508. v = l1_unscale(bits - 1, v, scale);
  509. s->sb_samples[ch][k * 12 + l + m][i] = v;
  510. }
  511. }
  512. } else {
  513. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  514. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  515. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  516. }
  517. }
  518. /* next subband in alloc table */
  519. j += 1 << bit_alloc_bits;
  520. }
  521. /* XXX: find a way to avoid this duplication of code */
  522. for (i = bound; i < sblimit; i++) {
  523. bit_alloc_bits = alloc_table[j];
  524. b = bit_alloc[0][i];
  525. if (b) {
  526. int mant, scale0, scale1;
  527. scale0 = scale_factors[0][i][k];
  528. scale1 = scale_factors[1][i][k];
  529. qindex = alloc_table[j + b];
  530. bits = ff_mpa_quant_bits[qindex];
  531. if (bits < 0) {
  532. /* 3 values at the same time */
  533. v = get_bits(&s->gb, -bits);
  534. steps = ff_mpa_quant_steps[qindex];
  535. mant = v % steps;
  536. v = v / steps;
  537. s->sb_samples[0][k * 12 + l + 0][i] =
  538. l2_unscale_group(steps, mant, scale0);
  539. s->sb_samples[1][k * 12 + l + 0][i] =
  540. l2_unscale_group(steps, mant, scale1);
  541. mant = v % steps;
  542. v = v / steps;
  543. s->sb_samples[0][k * 12 + l + 1][i] =
  544. l2_unscale_group(steps, mant, scale0);
  545. s->sb_samples[1][k * 12 + l + 1][i] =
  546. l2_unscale_group(steps, mant, scale1);
  547. s->sb_samples[0][k * 12 + l + 2][i] =
  548. l2_unscale_group(steps, v, scale0);
  549. s->sb_samples[1][k * 12 + l + 2][i] =
  550. l2_unscale_group(steps, v, scale1);
  551. } else {
  552. for (m = 0; m < 3; m++) {
  553. mant = get_bits(&s->gb, bits);
  554. s->sb_samples[0][k * 12 + l + m][i] =
  555. l1_unscale(bits - 1, mant, scale0);
  556. s->sb_samples[1][k * 12 + l + m][i] =
  557. l1_unscale(bits - 1, mant, scale1);
  558. }
  559. }
  560. } else {
  561. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  562. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  563. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  564. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  565. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  566. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  567. }
  568. /* next subband in alloc table */
  569. j += 1 << bit_alloc_bits;
  570. }
  571. /* fill remaining samples to zero */
  572. for (i = sblimit; i < SBLIMIT; i++) {
  573. for (ch = 0; ch < s->nb_channels; ch++) {
  574. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  575. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  576. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  577. }
  578. }
  579. }
  580. }
  581. return 3 * 12;
  582. }
  583. #define SPLIT(dst,sf,n) \
  584. if (n == 3) { \
  585. int m = (sf * 171) >> 9; \
  586. dst = sf - 3 * m; \
  587. sf = m; \
  588. } else if (n == 4) { \
  589. dst = sf & 3; \
  590. sf >>= 2; \
  591. } else if (n == 5) { \
  592. int m = (sf * 205) >> 10; \
  593. dst = sf - 5 * m; \
  594. sf = m; \
  595. } else if (n == 6) { \
  596. int m = (sf * 171) >> 10; \
  597. dst = sf - 6 * m; \
  598. sf = m; \
  599. } else { \
  600. dst = 0; \
  601. }
  602. static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
  603. int n3)
  604. {
  605. SPLIT(slen[3], sf, n3)
  606. SPLIT(slen[2], sf, n2)
  607. SPLIT(slen[1], sf, n1)
  608. slen[0] = sf;
  609. }
  610. static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
  611. int16_t *exponents)
  612. {
  613. const uint8_t *bstab, *pretab;
  614. int len, i, j, k, l, v0, shift, gain, gains[3];
  615. int16_t *exp_ptr;
  616. exp_ptr = exponents;
  617. gain = g->global_gain - 210;
  618. shift = g->scalefac_scale + 1;
  619. bstab = ff_band_size_long[s->sample_rate_index];
  620. pretab = ff_mpa_pretab[g->preflag];
  621. for (i = 0; i < g->long_end; i++) {
  622. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  623. len = bstab[i];
  624. for (j = len; j > 0; j--)
  625. *exp_ptr++ = v0;
  626. }
  627. if (g->short_start < 13) {
  628. bstab = ff_band_size_short[s->sample_rate_index];
  629. gains[0] = gain - (g->subblock_gain[0] << 3);
  630. gains[1] = gain - (g->subblock_gain[1] << 3);
  631. gains[2] = gain - (g->subblock_gain[2] << 3);
  632. k = g->long_end;
  633. for (i = g->short_start; i < 13; i++) {
  634. len = bstab[i];
  635. for (l = 0; l < 3; l++) {
  636. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  637. for (j = len; j > 0; j--)
  638. *exp_ptr++ = v0;
  639. }
  640. }
  641. }
  642. }
  643. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
  644. int *end_pos2)
  645. {
  646. if (s->in_gb.buffer && *pos >= s->gb.size_in_bits - s->extrasize * 8) {
  647. s->gb = s->in_gb;
  648. s->in_gb.buffer = NULL;
  649. s->extrasize = 0;
  650. av_assert2((get_bits_count(&s->gb) & 7) == 0);
  651. skip_bits_long(&s->gb, *pos - *end_pos);
  652. *end_pos2 =
  653. *end_pos = *end_pos2 + get_bits_count(&s->gb) - *pos;
  654. *pos = get_bits_count(&s->gb);
  655. }
  656. }
  657. /* Following is an optimized code for
  658. INTFLOAT v = *src
  659. if(get_bits1(&s->gb))
  660. v = -v;
  661. *dst = v;
  662. */
  663. #if USE_FLOATS
  664. #define READ_FLIP_SIGN(dst,src) \
  665. v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31); \
  666. AV_WN32A(dst, v);
  667. #else
  668. #define READ_FLIP_SIGN(dst,src) \
  669. v = -get_bits1(&s->gb); \
  670. *(dst) = (*(src) ^ v) - v;
  671. #endif
  672. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  673. int16_t *exponents, int end_pos2)
  674. {
  675. int s_index;
  676. int i;
  677. int last_pos, bits_left;
  678. VLC *vlc;
  679. int end_pos = FFMIN(end_pos2, s->gb.size_in_bits - s->extrasize * 8);
  680. /* low frequencies (called big values) */
  681. s_index = 0;
  682. for (i = 0; i < 3; i++) {
  683. const VLCElem *vlctab;
  684. int j, k, l, linbits;
  685. j = g->region_size[i];
  686. if (j == 0)
  687. continue;
  688. /* select vlc table */
  689. k = g->table_select[i];
  690. l = ff_mpa_huff_data[k][0];
  691. linbits = ff_mpa_huff_data[k][1];
  692. if (!l) {
  693. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
  694. s_index += 2 * j;
  695. continue;
  696. }
  697. vlctab = ff_huff_vlc[l];
  698. /* read huffcode and compute each couple */
  699. for (; j > 0; j--) {
  700. int exponent, x, y;
  701. int v;
  702. int pos = get_bits_count(&s->gb);
  703. if (pos >= end_pos){
  704. switch_buffer(s, &pos, &end_pos, &end_pos2);
  705. if (pos >= end_pos)
  706. break;
  707. }
  708. y = get_vlc2(&s->gb, vlctab, 7, 3);
  709. if (!y) {
  710. g->sb_hybrid[s_index ] =
  711. g->sb_hybrid[s_index + 1] = 0;
  712. s_index += 2;
  713. continue;
  714. }
  715. exponent= exponents[s_index];
  716. ff_dlog(s->avctx, "region=%d n=%d y=%d exp=%d\n",
  717. i, g->region_size[i] - j, y, exponent);
  718. if (y & 16) {
  719. x = y >> 5;
  720. y = y & 0x0f;
  721. if (x < 15) {
  722. READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
  723. } else {
  724. x += get_bitsz(&s->gb, linbits);
  725. v = l3_unscale(x, exponent);
  726. if (get_bits1(&s->gb))
  727. v = -v;
  728. g->sb_hybrid[s_index] = v;
  729. }
  730. if (y < 15) {
  731. READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
  732. } else {
  733. y += get_bitsz(&s->gb, linbits);
  734. v = l3_unscale(y, exponent);
  735. if (get_bits1(&s->gb))
  736. v = -v;
  737. g->sb_hybrid[s_index + 1] = v;
  738. }
  739. } else {
  740. x = y >> 5;
  741. y = y & 0x0f;
  742. x += y;
  743. if (x < 15) {
  744. READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
  745. } else {
  746. x += get_bitsz(&s->gb, linbits);
  747. v = l3_unscale(x, exponent);
  748. if (get_bits1(&s->gb))
  749. v = -v;
  750. g->sb_hybrid[s_index+!!y] = v;
  751. }
  752. g->sb_hybrid[s_index + !y] = 0;
  753. }
  754. s_index += 2;
  755. }
  756. }
  757. /* high frequencies */
  758. vlc = &ff_huff_quad_vlc[g->count1table_select];
  759. last_pos = 0;
  760. while (s_index <= 572) {
  761. int pos, code;
  762. pos = get_bits_count(&s->gb);
  763. if (pos >= end_pos) {
  764. if (pos > end_pos2 && last_pos) {
  765. /* some encoders generate an incorrect size for this
  766. part. We must go back into the data */
  767. s_index -= 4;
  768. skip_bits_long(&s->gb, last_pos - pos);
  769. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  770. if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
  771. s_index=0;
  772. break;
  773. }
  774. switch_buffer(s, &pos, &end_pos, &end_pos2);
  775. if (pos >= end_pos)
  776. break;
  777. }
  778. last_pos = pos;
  779. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  780. ff_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  781. g->sb_hybrid[s_index + 0] =
  782. g->sb_hybrid[s_index + 1] =
  783. g->sb_hybrid[s_index + 2] =
  784. g->sb_hybrid[s_index + 3] = 0;
  785. while (code) {
  786. static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
  787. int v;
  788. int pos = s_index + idxtab[code];
  789. code ^= 8 >> idxtab[code];
  790. READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
  791. }
  792. s_index += 4;
  793. }
  794. /* skip extension bits */
  795. bits_left = end_pos2 - get_bits_count(&s->gb);
  796. if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
  797. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  798. s_index=0;
  799. } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
  800. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  801. s_index = 0;
  802. }
  803. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
  804. skip_bits_long(&s->gb, bits_left);
  805. i = get_bits_count(&s->gb);
  806. switch_buffer(s, &i, &end_pos, &end_pos2);
  807. return 0;
  808. }
  809. /* Reorder short blocks from bitstream order to interleaved order. It
  810. would be faster to do it in parsing, but the code would be far more
  811. complicated */
  812. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  813. {
  814. int i, j, len;
  815. INTFLOAT *ptr, *dst, *ptr1;
  816. INTFLOAT tmp[576];
  817. if (g->block_type != 2)
  818. return;
  819. if (g->switch_point) {
  820. if (s->sample_rate_index != 8)
  821. ptr = g->sb_hybrid + 36;
  822. else
  823. ptr = g->sb_hybrid + 72;
  824. } else {
  825. ptr = g->sb_hybrid;
  826. }
  827. for (i = g->short_start; i < 13; i++) {
  828. len = ff_band_size_short[s->sample_rate_index][i];
  829. ptr1 = ptr;
  830. dst = tmp;
  831. for (j = len; j > 0; j--) {
  832. *dst++ = ptr[0*len];
  833. *dst++ = ptr[1*len];
  834. *dst++ = ptr[2*len];
  835. ptr++;
  836. }
  837. ptr += 2 * len;
  838. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  839. }
  840. }
  841. #define ISQRT2 FIXR(0.70710678118654752440)
  842. static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
  843. {
  844. int i, j, k, l;
  845. int sf_max, sf, len, non_zero_found;
  846. INTFLOAT *tab0, *tab1, v1, v2;
  847. const INTFLOAT (*is_tab)[16];
  848. SUINTFLOAT tmp0, tmp1;
  849. int non_zero_found_short[3];
  850. /* intensity stereo */
  851. if (s->mode_ext & MODE_EXT_I_STEREO) {
  852. if (!s->lsf) {
  853. is_tab = is_table;
  854. sf_max = 7;
  855. } else {
  856. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  857. sf_max = 16;
  858. }
  859. tab0 = g0->sb_hybrid + 576;
  860. tab1 = g1->sb_hybrid + 576;
  861. non_zero_found_short[0] = 0;
  862. non_zero_found_short[1] = 0;
  863. non_zero_found_short[2] = 0;
  864. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  865. for (i = 12; i >= g1->short_start; i--) {
  866. /* for last band, use previous scale factor */
  867. if (i != 11)
  868. k -= 3;
  869. len = ff_band_size_short[s->sample_rate_index][i];
  870. for (l = 2; l >= 0; l--) {
  871. tab0 -= len;
  872. tab1 -= len;
  873. if (!non_zero_found_short[l]) {
  874. /* test if non zero band. if so, stop doing i-stereo */
  875. for (j = 0; j < len; j++) {
  876. if (tab1[j] != 0) {
  877. non_zero_found_short[l] = 1;
  878. goto found1;
  879. }
  880. }
  881. sf = g1->scale_factors[k + l];
  882. if (sf >= sf_max)
  883. goto found1;
  884. v1 = is_tab[0][sf];
  885. v2 = is_tab[1][sf];
  886. for (j = 0; j < len; j++) {
  887. tmp0 = tab0[j];
  888. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  889. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  890. }
  891. } else {
  892. found1:
  893. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  894. /* lower part of the spectrum : do ms stereo
  895. if enabled */
  896. for (j = 0; j < len; j++) {
  897. tmp0 = tab0[j];
  898. tmp1 = tab1[j];
  899. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  900. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  901. }
  902. }
  903. }
  904. }
  905. }
  906. non_zero_found = non_zero_found_short[0] |
  907. non_zero_found_short[1] |
  908. non_zero_found_short[2];
  909. for (i = g1->long_end - 1;i >= 0;i--) {
  910. len = ff_band_size_long[s->sample_rate_index][i];
  911. tab0 -= len;
  912. tab1 -= len;
  913. /* test if non zero band. if so, stop doing i-stereo */
  914. if (!non_zero_found) {
  915. for (j = 0; j < len; j++) {
  916. if (tab1[j] != 0) {
  917. non_zero_found = 1;
  918. goto found2;
  919. }
  920. }
  921. /* for last band, use previous scale factor */
  922. k = (i == 21) ? 20 : i;
  923. sf = g1->scale_factors[k];
  924. if (sf >= sf_max)
  925. goto found2;
  926. v1 = is_tab[0][sf];
  927. v2 = is_tab[1][sf];
  928. for (j = 0; j < len; j++) {
  929. tmp0 = tab0[j];
  930. tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
  931. tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
  932. }
  933. } else {
  934. found2:
  935. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  936. /* lower part of the spectrum : do ms stereo
  937. if enabled */
  938. for (j = 0; j < len; j++) {
  939. tmp0 = tab0[j];
  940. tmp1 = tab1[j];
  941. tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  942. tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  943. }
  944. }
  945. }
  946. }
  947. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  948. /* ms stereo ONLY */
  949. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  950. global gain */
  951. #if USE_FLOATS
  952. s->butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
  953. #else
  954. tab0 = g0->sb_hybrid;
  955. tab1 = g1->sb_hybrid;
  956. for (i = 0; i < 576; i++) {
  957. tmp0 = tab0[i];
  958. tmp1 = tab1[i];
  959. tab0[i] = tmp0 + tmp1;
  960. tab1[i] = tmp0 - tmp1;
  961. }
  962. #endif
  963. }
  964. }
  965. #if USE_FLOATS
  966. #if HAVE_MIPSFPU
  967. # include "mips/compute_antialias_float.h"
  968. #endif /* HAVE_MIPSFPU */
  969. #else
  970. #if HAVE_MIPSDSP
  971. # include "mips/compute_antialias_fixed.h"
  972. #endif /* HAVE_MIPSDSP */
  973. #endif /* USE_FLOATS */
  974. #ifndef compute_antialias
  975. #if USE_FLOATS
  976. #define AA(j) do { \
  977. float tmp0 = ptr[-1-j]; \
  978. float tmp1 = ptr[ j]; \
  979. ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1]; \
  980. ptr[ j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0]; \
  981. } while (0)
  982. #else
  983. #define AA(j) do { \
  984. SUINT tmp0 = ptr[-1-j]; \
  985. SUINT tmp1 = ptr[ j]; \
  986. SUINT tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]); \
  987. ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2])); \
  988. ptr[ j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3])); \
  989. } while (0)
  990. #endif
  991. static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
  992. {
  993. INTFLOAT *ptr;
  994. int n, i;
  995. /* we antialias only "long" bands */
  996. if (g->block_type == 2) {
  997. if (!g->switch_point)
  998. return;
  999. /* XXX: check this for 8000Hz case */
  1000. n = 1;
  1001. } else {
  1002. n = SBLIMIT - 1;
  1003. }
  1004. ptr = g->sb_hybrid + 18;
  1005. for (i = n; i > 0; i--) {
  1006. AA(0);
  1007. AA(1);
  1008. AA(2);
  1009. AA(3);
  1010. AA(4);
  1011. AA(5);
  1012. AA(6);
  1013. AA(7);
  1014. ptr += 18;
  1015. }
  1016. }
  1017. #endif /* compute_antialias */
  1018. static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
  1019. INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
  1020. {
  1021. INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
  1022. INTFLOAT out2[12];
  1023. int i, j, mdct_long_end, sblimit;
  1024. /* find last non zero block */
  1025. ptr = g->sb_hybrid + 576;
  1026. ptr1 = g->sb_hybrid + 2 * 18;
  1027. while (ptr >= ptr1) {
  1028. int32_t *p;
  1029. ptr -= 6;
  1030. p = (int32_t*)ptr;
  1031. if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
  1032. break;
  1033. }
  1034. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1035. if (g->block_type == 2) {
  1036. /* XXX: check for 8000 Hz */
  1037. if (g->switch_point)
  1038. mdct_long_end = 2;
  1039. else
  1040. mdct_long_end = 0;
  1041. } else {
  1042. mdct_long_end = sblimit;
  1043. }
  1044. s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
  1045. mdct_long_end, g->switch_point,
  1046. g->block_type);
  1047. buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
  1048. ptr = g->sb_hybrid + 18 * mdct_long_end;
  1049. for (j = mdct_long_end; j < sblimit; j++) {
  1050. /* select frequency inversion */
  1051. win = RENAME(ff_mdct_win)[2 + (4 & -(j & 1))];
  1052. out_ptr = sb_samples + j;
  1053. for (i = 0; i < 6; i++) {
  1054. *out_ptr = buf[4*i];
  1055. out_ptr += SBLIMIT;
  1056. }
  1057. imdct12(out2, ptr + 0);
  1058. for (i = 0; i < 6; i++) {
  1059. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*1)];
  1060. buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
  1061. out_ptr += SBLIMIT;
  1062. }
  1063. imdct12(out2, ptr + 1);
  1064. for (i = 0; i < 6; i++) {
  1065. *out_ptr = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*2)];
  1066. buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
  1067. out_ptr += SBLIMIT;
  1068. }
  1069. imdct12(out2, ptr + 2);
  1070. for (i = 0; i < 6; i++) {
  1071. buf[4*(i + 6*0)] = MULH3(out2[i ], win[i ], 1) + buf[4*(i + 6*0)];
  1072. buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
  1073. buf[4*(i + 6*2)] = 0;
  1074. }
  1075. ptr += 18;
  1076. buf += (j&3) != 3 ? 1 : (4*18-3);
  1077. }
  1078. /* zero bands */
  1079. for (j = sblimit; j < SBLIMIT; j++) {
  1080. /* overlap */
  1081. out_ptr = sb_samples + j;
  1082. for (i = 0; i < 18; i++) {
  1083. *out_ptr = buf[4*i];
  1084. buf[4*i] = 0;
  1085. out_ptr += SBLIMIT;
  1086. }
  1087. buf += (j&3) != 3 ? 1 : (4*18-3);
  1088. }
  1089. }
  1090. /* main layer3 decoding function */
  1091. static int mp_decode_layer3(MPADecodeContext *s)
  1092. {
  1093. int nb_granules, main_data_begin;
  1094. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1095. GranuleDef *g;
  1096. int16_t exponents[576]; //FIXME try INTFLOAT
  1097. int ret;
  1098. /* read side info */
  1099. if (s->lsf) {
  1100. ret = handle_crc(s, ((s->nb_channels == 1) ? 8*9 : 8*17));
  1101. main_data_begin = get_bits(&s->gb, 8);
  1102. skip_bits(&s->gb, s->nb_channels);
  1103. nb_granules = 1;
  1104. } else {
  1105. ret = handle_crc(s, ((s->nb_channels == 1) ? 8*17 : 8*32));
  1106. main_data_begin = get_bits(&s->gb, 9);
  1107. if (s->nb_channels == 2)
  1108. skip_bits(&s->gb, 3);
  1109. else
  1110. skip_bits(&s->gb, 5);
  1111. nb_granules = 2;
  1112. for (ch = 0; ch < s->nb_channels; ch++) {
  1113. s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
  1114. s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1115. }
  1116. }
  1117. if (ret < 0)
  1118. return ret;
  1119. for (gr = 0; gr < nb_granules; gr++) {
  1120. for (ch = 0; ch < s->nb_channels; ch++) {
  1121. ff_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1122. g = &s->granules[ch][gr];
  1123. g->part2_3_length = get_bits(&s->gb, 12);
  1124. g->big_values = get_bits(&s->gb, 9);
  1125. if (g->big_values > 288) {
  1126. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1127. return AVERROR_INVALIDDATA;
  1128. }
  1129. g->global_gain = get_bits(&s->gb, 8);
  1130. /* if MS stereo only is selected, we precompute the
  1131. 1/sqrt(2) renormalization factor */
  1132. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1133. MODE_EXT_MS_STEREO)
  1134. g->global_gain -= 2;
  1135. if (s->lsf)
  1136. g->scalefac_compress = get_bits(&s->gb, 9);
  1137. else
  1138. g->scalefac_compress = get_bits(&s->gb, 4);
  1139. blocksplit_flag = get_bits1(&s->gb);
  1140. if (blocksplit_flag) {
  1141. g->block_type = get_bits(&s->gb, 2);
  1142. if (g->block_type == 0) {
  1143. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1144. return AVERROR_INVALIDDATA;
  1145. }
  1146. g->switch_point = get_bits1(&s->gb);
  1147. for (i = 0; i < 2; i++)
  1148. g->table_select[i] = get_bits(&s->gb, 5);
  1149. for (i = 0; i < 3; i++)
  1150. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1151. init_short_region(s, g);
  1152. } else {
  1153. int region_address1, region_address2;
  1154. g->block_type = 0;
  1155. g->switch_point = 0;
  1156. for (i = 0; i < 3; i++)
  1157. g->table_select[i] = get_bits(&s->gb, 5);
  1158. /* compute huffman coded region sizes */
  1159. region_address1 = get_bits(&s->gb, 4);
  1160. region_address2 = get_bits(&s->gb, 3);
  1161. ff_dlog(s->avctx, "region1=%d region2=%d\n",
  1162. region_address1, region_address2);
  1163. init_long_region(s, g, region_address1, region_address2);
  1164. }
  1165. region_offset2size(g);
  1166. compute_band_indexes(s, g);
  1167. g->preflag = 0;
  1168. if (!s->lsf)
  1169. g->preflag = get_bits1(&s->gb);
  1170. g->scalefac_scale = get_bits1(&s->gb);
  1171. g->count1table_select = get_bits1(&s->gb);
  1172. ff_dlog(s->avctx, "block_type=%d switch_point=%d\n",
  1173. g->block_type, g->switch_point);
  1174. }
  1175. }
  1176. if (!s->adu_mode) {
  1177. int skip;
  1178. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb) >> 3);
  1179. s->extrasize = av_clip((get_bits_left(&s->gb) >> 3) - s->extrasize, 0,
  1180. FFMAX(0, LAST_BUF_SIZE - s->last_buf_size));
  1181. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1182. /* now we get bits from the main_data_begin offset */
  1183. ff_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
  1184. main_data_begin, s->last_buf_size);
  1185. memcpy(s->last_buf + s->last_buf_size, ptr, s->extrasize);
  1186. s->in_gb = s->gb;
  1187. init_get_bits(&s->gb, s->last_buf, (s->last_buf_size + s->extrasize) * 8);
  1188. s->last_buf_size <<= 3;
  1189. for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
  1190. for (ch = 0; ch < s->nb_channels; ch++) {
  1191. g = &s->granules[ch][gr];
  1192. s->last_buf_size += g->part2_3_length;
  1193. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1194. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1195. }
  1196. }
  1197. skip = s->last_buf_size - 8 * main_data_begin;
  1198. if (skip >= s->gb.size_in_bits - s->extrasize * 8 && s->in_gb.buffer) {
  1199. skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits + s->extrasize * 8);
  1200. s->gb = s->in_gb;
  1201. s->in_gb.buffer = NULL;
  1202. s->extrasize = 0;
  1203. } else {
  1204. skip_bits_long(&s->gb, skip);
  1205. }
  1206. } else {
  1207. gr = 0;
  1208. s->extrasize = 0;
  1209. }
  1210. for (; gr < nb_granules; gr++) {
  1211. for (ch = 0; ch < s->nb_channels; ch++) {
  1212. g = &s->granules[ch][gr];
  1213. bits_pos = get_bits_count(&s->gb);
  1214. if (!s->lsf) {
  1215. uint8_t *sc;
  1216. int slen, slen1, slen2;
  1217. /* MPEG-1 scale factors */
  1218. slen1 = ff_slen_table[0][g->scalefac_compress];
  1219. slen2 = ff_slen_table[1][g->scalefac_compress];
  1220. ff_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1221. if (g->block_type == 2) {
  1222. n = g->switch_point ? 17 : 18;
  1223. j = 0;
  1224. if (slen1) {
  1225. for (i = 0; i < n; i++)
  1226. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1227. } else {
  1228. for (i = 0; i < n; i++)
  1229. g->scale_factors[j++] = 0;
  1230. }
  1231. if (slen2) {
  1232. for (i = 0; i < 18; i++)
  1233. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1234. for (i = 0; i < 3; i++)
  1235. g->scale_factors[j++] = 0;
  1236. } else {
  1237. for (i = 0; i < 21; i++)
  1238. g->scale_factors[j++] = 0;
  1239. }
  1240. } else {
  1241. sc = s->granules[ch][0].scale_factors;
  1242. j = 0;
  1243. for (k = 0; k < 4; k++) {
  1244. n = k == 0 ? 6 : 5;
  1245. if ((g->scfsi & (0x8 >> k)) == 0) {
  1246. slen = (k < 2) ? slen1 : slen2;
  1247. if (slen) {
  1248. for (i = 0; i < n; i++)
  1249. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1250. } else {
  1251. for (i = 0; i < n; i++)
  1252. g->scale_factors[j++] = 0;
  1253. }
  1254. } else {
  1255. /* simply copy from last granule */
  1256. for (i = 0; i < n; i++) {
  1257. g->scale_factors[j] = sc[j];
  1258. j++;
  1259. }
  1260. }
  1261. }
  1262. g->scale_factors[j++] = 0;
  1263. }
  1264. } else {
  1265. int tindex, tindex2, slen[4], sl, sf;
  1266. /* LSF scale factors */
  1267. if (g->block_type == 2)
  1268. tindex = g->switch_point ? 2 : 1;
  1269. else
  1270. tindex = 0;
  1271. sf = g->scalefac_compress;
  1272. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1273. /* intensity stereo case */
  1274. sf >>= 1;
  1275. if (sf < 180) {
  1276. lsf_sf_expand(slen, sf, 6, 6, 0);
  1277. tindex2 = 3;
  1278. } else if (sf < 244) {
  1279. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1280. tindex2 = 4;
  1281. } else {
  1282. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1283. tindex2 = 5;
  1284. }
  1285. } else {
  1286. /* normal case */
  1287. if (sf < 400) {
  1288. lsf_sf_expand(slen, sf, 5, 4, 4);
  1289. tindex2 = 0;
  1290. } else if (sf < 500) {
  1291. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1292. tindex2 = 1;
  1293. } else {
  1294. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1295. tindex2 = 2;
  1296. g->preflag = 1;
  1297. }
  1298. }
  1299. j = 0;
  1300. for (k = 0; k < 4; k++) {
  1301. n = ff_lsf_nsf_table[tindex2][tindex][k];
  1302. sl = slen[k];
  1303. if (sl) {
  1304. for (i = 0; i < n; i++)
  1305. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1306. } else {
  1307. for (i = 0; i < n; i++)
  1308. g->scale_factors[j++] = 0;
  1309. }
  1310. }
  1311. /* XXX: should compute exact size */
  1312. for (; j < 40; j++)
  1313. g->scale_factors[j] = 0;
  1314. }
  1315. exponents_from_scale_factors(s, g, exponents);
  1316. /* read Huffman coded residue */
  1317. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1318. } /* ch */
  1319. if (s->mode == MPA_JSTEREO)
  1320. compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
  1321. for (ch = 0; ch < s->nb_channels; ch++) {
  1322. g = &s->granules[ch][gr];
  1323. reorder_block(s, g);
  1324. compute_antialias(s, g);
  1325. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1326. }
  1327. } /* gr */
  1328. if (get_bits_count(&s->gb) < 0)
  1329. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1330. return nb_granules * 18;
  1331. }
  1332. static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
  1333. const uint8_t *buf, int buf_size)
  1334. {
  1335. int i, nb_frames, ch, ret;
  1336. OUT_INT *samples_ptr;
  1337. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
  1338. if (s->error_protection)
  1339. s->crc = get_bits(&s->gb, 16);
  1340. switch(s->layer) {
  1341. case 1:
  1342. s->avctx->frame_size = 384;
  1343. nb_frames = mp_decode_layer1(s);
  1344. break;
  1345. case 2:
  1346. s->avctx->frame_size = 1152;
  1347. nb_frames = mp_decode_layer2(s);
  1348. break;
  1349. case 3:
  1350. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1351. default:
  1352. nb_frames = mp_decode_layer3(s);
  1353. s->last_buf_size=0;
  1354. if (s->in_gb.buffer) {
  1355. align_get_bits(&s->gb);
  1356. i = (get_bits_left(&s->gb) >> 3) - s->extrasize;
  1357. if (i >= 0 && i <= BACKSTEP_SIZE) {
  1358. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb) >> 3), i);
  1359. s->last_buf_size=i;
  1360. } else
  1361. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1362. s->gb = s->in_gb;
  1363. s->in_gb.buffer = NULL;
  1364. s->extrasize = 0;
  1365. }
  1366. align_get_bits(&s->gb);
  1367. av_assert1((get_bits_count(&s->gb) & 7) == 0);
  1368. i = (get_bits_left(&s->gb) >> 3) - s->extrasize;
  1369. if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
  1370. if (i < 0)
  1371. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1372. i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1373. }
  1374. av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
  1375. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1376. s->last_buf_size += i;
  1377. }
  1378. if(nb_frames < 0)
  1379. return nb_frames;
  1380. /* get output buffer */
  1381. if (!samples) {
  1382. av_assert0(s->frame);
  1383. s->frame->nb_samples = s->avctx->frame_size;
  1384. if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
  1385. return ret;
  1386. samples = (OUT_INT **)s->frame->extended_data;
  1387. }
  1388. /* apply the synthesis filter */
  1389. for (ch = 0; ch < s->nb_channels; ch++) {
  1390. int sample_stride;
  1391. if (s->avctx->sample_fmt == OUT_FMT_P) {
  1392. samples_ptr = samples[ch];
  1393. sample_stride = 1;
  1394. } else {
  1395. samples_ptr = samples[0] + ch;
  1396. sample_stride = s->nb_channels;
  1397. }
  1398. for (i = 0; i < nb_frames; i++) {
  1399. RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
  1400. &(s->synth_buf_offset[ch]),
  1401. RENAME(ff_mpa_synth_window),
  1402. &s->dither_state, samples_ptr,
  1403. sample_stride, s->sb_samples[ch][i]);
  1404. samples_ptr += 32 * sample_stride;
  1405. }
  1406. }
  1407. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1408. }
  1409. static int decode_frame(AVCodecContext *avctx, AVFrame *frame,
  1410. int *got_frame_ptr, AVPacket *avpkt)
  1411. {
  1412. const uint8_t *buf = avpkt->data;
  1413. int buf_size = avpkt->size;
  1414. MPADecodeContext *s = avctx->priv_data;
  1415. uint32_t header;
  1416. int ret;
  1417. int skipped = 0;
  1418. while(buf_size && !*buf){
  1419. buf++;
  1420. buf_size--;
  1421. skipped++;
  1422. }
  1423. if (buf_size < HEADER_SIZE)
  1424. return AVERROR_INVALIDDATA;
  1425. header = AV_RB32(buf);
  1426. if (header >> 8 == AV_RB32("TAG") >> 8) {
  1427. av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
  1428. return buf_size + skipped;
  1429. }
  1430. ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1431. if (ret < 0) {
  1432. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  1433. return AVERROR_INVALIDDATA;
  1434. } else if (ret == 1) {
  1435. /* free format: prepare to compute frame size */
  1436. s->frame_size = -1;
  1437. return AVERROR_INVALIDDATA;
  1438. }
  1439. /* update codec info */
  1440. av_channel_layout_uninit(&avctx->ch_layout);
  1441. avctx->ch_layout = s->nb_channels == 1 ? (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO :
  1442. (AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO;
  1443. if (!avctx->bit_rate)
  1444. avctx->bit_rate = s->bit_rate;
  1445. if (s->frame_size <= 0) {
  1446. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  1447. return AVERROR_INVALIDDATA;
  1448. } else if (s->frame_size < buf_size) {
  1449. av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
  1450. buf_size= s->frame_size;
  1451. }
  1452. s->frame = frame;
  1453. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1454. if (ret >= 0) {
  1455. s->frame->nb_samples = avctx->frame_size;
  1456. *got_frame_ptr = 1;
  1457. avctx->sample_rate = s->sample_rate;
  1458. //FIXME maybe move the other codec info stuff from above here too
  1459. } else {
  1460. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1461. /* Only return an error if the bad frame makes up the whole packet or
  1462. * the error is related to buffer management.
  1463. * If there is more data in the packet, just consume the bad frame
  1464. * instead of returning an error, which would discard the whole
  1465. * packet. */
  1466. *got_frame_ptr = 0;
  1467. if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
  1468. return ret;
  1469. }
  1470. s->frame_size = 0;
  1471. return buf_size + skipped;
  1472. }
  1473. static void mp_flush(MPADecodeContext *ctx)
  1474. {
  1475. memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
  1476. memset(ctx->mdct_buf, 0, sizeof(ctx->mdct_buf));
  1477. ctx->last_buf_size = 0;
  1478. ctx->dither_state = 0;
  1479. }
  1480. static void flush(AVCodecContext *avctx)
  1481. {
  1482. mp_flush(avctx->priv_data);
  1483. }
  1484. #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
  1485. static int decode_frame_adu(AVCodecContext *avctx, AVFrame *frame,
  1486. int *got_frame_ptr, AVPacket *avpkt)
  1487. {
  1488. const uint8_t *buf = avpkt->data;
  1489. int buf_size = avpkt->size;
  1490. MPADecodeContext *s = avctx->priv_data;
  1491. uint32_t header;
  1492. int len, ret;
  1493. len = buf_size;
  1494. // Discard too short frames
  1495. if (buf_size < HEADER_SIZE) {
  1496. av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
  1497. return AVERROR_INVALIDDATA;
  1498. }
  1499. if (len > MPA_MAX_CODED_FRAME_SIZE)
  1500. len = MPA_MAX_CODED_FRAME_SIZE;
  1501. // Get header and restore sync word
  1502. header = AV_RB32(buf) | 0xffe00000;
  1503. ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  1504. if (ret < 0) {
  1505. av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
  1506. return ret;
  1507. }
  1508. /* update codec info */
  1509. avctx->sample_rate = s->sample_rate;
  1510. av_channel_layout_uninit(&avctx->ch_layout);
  1511. avctx->ch_layout = s->nb_channels == 1 ? (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO :
  1512. (AVChannelLayout)AV_CHANNEL_LAYOUT_STEREO;
  1513. if (!avctx->bit_rate)
  1514. avctx->bit_rate = s->bit_rate;
  1515. s->frame_size = len;
  1516. s->frame = frame;
  1517. ret = mp_decode_frame(s, NULL, buf, buf_size);
  1518. if (ret < 0) {
  1519. av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
  1520. return ret;
  1521. }
  1522. *got_frame_ptr = 1;
  1523. return buf_size;
  1524. }
  1525. #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
  1526. #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
  1527. /**
  1528. * Context for MP3On4 decoder
  1529. */
  1530. typedef struct MP3On4DecodeContext {
  1531. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  1532. int syncword; ///< syncword patch
  1533. const uint8_t *coff; ///< channel offsets in output buffer
  1534. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  1535. } MP3On4DecodeContext;
  1536. #include "mpeg4audio.h"
  1537. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  1538. /* number of mp3 decoder instances */
  1539. static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
  1540. /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
  1541. static const uint8_t chan_offset[8][5] = {
  1542. { 0 },
  1543. { 0 }, // C
  1544. { 0 }, // FLR
  1545. { 2, 0 }, // C FLR
  1546. { 2, 0, 3 }, // C FLR BS
  1547. { 2, 0, 3 }, // C FLR BLRS
  1548. { 2, 0, 4, 3 }, // C FLR BLRS LFE
  1549. { 2, 0, 6, 4, 3 }, // C FLR BLRS BLR LFE
  1550. };
  1551. /* mp3on4 channel layouts */
  1552. static const int16_t chan_layout[8] = {
  1553. 0,
  1554. AV_CH_LAYOUT_MONO,
  1555. AV_CH_LAYOUT_STEREO,
  1556. AV_CH_LAYOUT_SURROUND,
  1557. AV_CH_LAYOUT_4POINT0,
  1558. AV_CH_LAYOUT_5POINT0,
  1559. AV_CH_LAYOUT_5POINT1,
  1560. AV_CH_LAYOUT_7POINT1
  1561. };
  1562. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  1563. {
  1564. MP3On4DecodeContext *s = avctx->priv_data;
  1565. int i;
  1566. for (i = 0; i < s->frames; i++)
  1567. av_freep(&s->mp3decctx[i]);
  1568. return 0;
  1569. }
  1570. static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
  1571. {
  1572. MP3On4DecodeContext *s = avctx->priv_data;
  1573. MPEG4AudioConfig cfg;
  1574. int i, ret;
  1575. if ((avctx->extradata_size < 2) || !avctx->extradata) {
  1576. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  1577. return AVERROR_INVALIDDATA;
  1578. }
  1579. avpriv_mpeg4audio_get_config2(&cfg, avctx->extradata,
  1580. avctx->extradata_size, 1, avctx);
  1581. if (!cfg.chan_config || cfg.chan_config > 7) {
  1582. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  1583. return AVERROR_INVALIDDATA;
  1584. }
  1585. s->frames = mp3Frames[cfg.chan_config];
  1586. s->coff = chan_offset[cfg.chan_config];
  1587. av_channel_layout_uninit(&avctx->ch_layout);
  1588. av_channel_layout_from_mask(&avctx->ch_layout, chan_layout[cfg.chan_config]);
  1589. if (cfg.sample_rate < 16000)
  1590. s->syncword = 0xffe00000;
  1591. else
  1592. s->syncword = 0xfff00000;
  1593. /* Init the first mp3 decoder in standard way, so that all tables get built
  1594. * We replace avctx->priv_data with the context of the first decoder so that
  1595. * decode_init() does not have to be changed.
  1596. * Other decoders will be initialized here copying data from the first context
  1597. */
  1598. // Allocate zeroed memory for the first decoder context
  1599. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  1600. if (!s->mp3decctx[0])
  1601. return AVERROR(ENOMEM);
  1602. // Put decoder context in place to make init_decode() happy
  1603. avctx->priv_data = s->mp3decctx[0];
  1604. ret = decode_init(avctx);
  1605. // Restore mp3on4 context pointer
  1606. avctx->priv_data = s;
  1607. if (ret < 0)
  1608. return ret;
  1609. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  1610. /* Create a separate codec/context for each frame (first is already ok).
  1611. * Each frame is 1 or 2 channels - up to 5 frames allowed
  1612. */
  1613. for (i = 1; i < s->frames; i++) {
  1614. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  1615. if (!s->mp3decctx[i])
  1616. return AVERROR(ENOMEM);
  1617. s->mp3decctx[i]->adu_mode = 1;
  1618. s->mp3decctx[i]->avctx = avctx;
  1619. s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
  1620. s->mp3decctx[i]->butterflies_float = s->mp3decctx[0]->butterflies_float;
  1621. }
  1622. return 0;
  1623. }
  1624. static void flush_mp3on4(AVCodecContext *avctx)
  1625. {
  1626. int i;
  1627. MP3On4DecodeContext *s = avctx->priv_data;
  1628. for (i = 0; i < s->frames; i++)
  1629. mp_flush(s->mp3decctx[i]);
  1630. }
  1631. static int decode_frame_mp3on4(AVCodecContext *avctx, AVFrame *frame,
  1632. int *got_frame_ptr, AVPacket *avpkt)
  1633. {
  1634. const uint8_t *buf = avpkt->data;
  1635. int buf_size = avpkt->size;
  1636. MP3On4DecodeContext *s = avctx->priv_data;
  1637. MPADecodeContext *m;
  1638. int fsize, len = buf_size, out_size = 0;
  1639. uint32_t header;
  1640. OUT_INT **out_samples;
  1641. OUT_INT *outptr[2];
  1642. int fr, ch, ret;
  1643. /* get output buffer */
  1644. frame->nb_samples = MPA_FRAME_SIZE;
  1645. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1646. return ret;
  1647. out_samples = (OUT_INT **)frame->extended_data;
  1648. // Discard too short frames
  1649. if (buf_size < HEADER_SIZE)
  1650. return AVERROR_INVALIDDATA;
  1651. avctx->bit_rate = 0;
  1652. ch = 0;
  1653. for (fr = 0; fr < s->frames; fr++) {
  1654. fsize = AV_RB16(buf) >> 4;
  1655. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  1656. m = s->mp3decctx[fr];
  1657. av_assert1(m);
  1658. if (fsize < HEADER_SIZE) {
  1659. av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
  1660. return AVERROR_INVALIDDATA;
  1661. }
  1662. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  1663. ret = avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  1664. if (ret < 0) {
  1665. av_log(avctx, AV_LOG_ERROR, "Bad header, discard block\n");
  1666. return AVERROR_INVALIDDATA;
  1667. }
  1668. if (ch + m->nb_channels > avctx->ch_layout.nb_channels ||
  1669. s->coff[fr] + m->nb_channels > avctx->ch_layout.nb_channels) {
  1670. av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
  1671. "channel count\n");
  1672. return AVERROR_INVALIDDATA;
  1673. }
  1674. ch += m->nb_channels;
  1675. outptr[0] = out_samples[s->coff[fr]];
  1676. if (m->nb_channels > 1)
  1677. outptr[1] = out_samples[s->coff[fr] + 1];
  1678. if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0) {
  1679. av_log(avctx, AV_LOG_ERROR, "failed to decode channel %d\n", ch);
  1680. memset(outptr[0], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
  1681. if (m->nb_channels > 1)
  1682. memset(outptr[1], 0, MPA_FRAME_SIZE*sizeof(OUT_INT));
  1683. ret = m->nb_channels * MPA_FRAME_SIZE*sizeof(OUT_INT);
  1684. }
  1685. out_size += ret;
  1686. buf += fsize;
  1687. len -= fsize;
  1688. avctx->bit_rate += m->bit_rate;
  1689. }
  1690. if (ch != avctx->ch_layout.nb_channels) {
  1691. av_log(avctx, AV_LOG_ERROR, "failed to decode all channels\n");
  1692. return AVERROR_INVALIDDATA;
  1693. }
  1694. /* update codec info */
  1695. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  1696. frame->nb_samples = out_size / (avctx->ch_layout.nb_channels * sizeof(OUT_INT));
  1697. *got_frame_ptr = 1;
  1698. return buf_size;
  1699. }
  1700. #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */