ffv1enc.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949
  1. /*
  2. * FFV1 encoder
  3. *
  4. * Copyright (c) 2003-2013 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec) encoder
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "libavutil/avassert.h"
  28. #include "libavutil/crc.h"
  29. #include "libavutil/mem.h"
  30. #include "libavutil/opt.h"
  31. #include "libavutil/pixdesc.h"
  32. #include "libavutil/qsort.h"
  33. #include "avcodec.h"
  34. #include "encode.h"
  35. #include "codec_internal.h"
  36. #include "put_bits.h"
  37. #include "put_golomb.h"
  38. #include "rangecoder.h"
  39. #include "ffv1.h"
  40. #include "ffv1enc.h"
  41. static const int8_t quant5_10bit[256] = {
  42. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  43. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  44. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  45. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  46. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  47. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  48. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  49. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  50. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  51. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  52. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  53. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  54. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1,
  55. -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
  56. -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
  57. -1, -1, -1, -1, -1, -1, -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,
  58. };
  59. static const int8_t quant5[256] = {
  60. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  61. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  67. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  68. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  69. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  70. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  71. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  72. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  73. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  74. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  75. -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1,
  76. };
  77. static const int8_t quant9_10bit[256] = {
  78. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  79. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  80. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  81. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  82. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  83. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  84. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  85. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  86. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  87. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  88. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  89. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  90. -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3,
  91. -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,
  92. -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
  93. -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -0, -0, -0, -0,
  94. };
  95. static const int8_t quant11[256] = {
  96. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  97. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  98. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  99. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  100. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  101. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  102. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  103. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  104. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  105. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  106. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  107. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  108. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,
  109. -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -4, -4,
  110. -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
  111. -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -1,
  112. };
  113. static const uint8_t ver2_state[256] = {
  114. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  115. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  116. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  117. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  118. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  119. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  120. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  121. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  122. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  123. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  124. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  125. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  126. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  127. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  128. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  129. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  130. };
  131. static void find_best_state(uint8_t best_state[256][256],
  132. const uint8_t one_state[256])
  133. {
  134. int i, j, k, m;
  135. uint32_t l2tab[256];
  136. for (i = 1; i < 256; i++)
  137. l2tab[i] = -log2(i / 256.0) * ((1U << 31) / 8);
  138. for (i = 0; i < 256; i++) {
  139. uint64_t best_len[256];
  140. for (j = 0; j < 256; j++)
  141. best_len[j] = UINT64_MAX;
  142. for (j = FFMAX(i - 10, 1); j < FFMIN(i + 11, 256); j++) {
  143. uint32_t occ[256] = { 0 };
  144. uint64_t len = 0;
  145. occ[j] = UINT32_MAX;
  146. if (!one_state[j])
  147. continue;
  148. for (k = 0; k < 256; k++) {
  149. uint32_t newocc[256] = { 0 };
  150. for (m = 1; m < 256; m++)
  151. if (occ[m]) {
  152. len += (occ[m]*(( i *(uint64_t)l2tab[ m]
  153. + (256-i)*(uint64_t)l2tab[256-m])>>8)) >> 8;
  154. }
  155. if (len < best_len[k]) {
  156. best_len[k] = len;
  157. best_state[i][k] = j;
  158. }
  159. for (m = 1; m < 256; m++)
  160. if (occ[m]) {
  161. newocc[ one_state[ m]] += occ[m] * (uint64_t) i >> 8;
  162. newocc[256 - one_state[256 - m]] += occ[m] * (uint64_t)(256 - i) >> 8;
  163. }
  164. memcpy(occ, newocc, sizeof(occ));
  165. }
  166. }
  167. }
  168. }
  169. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c,
  170. uint8_t *state, int v,
  171. int is_signed,
  172. uint64_t rc_stat[256][2],
  173. uint64_t rc_stat2[32][2])
  174. {
  175. int i;
  176. #define put_rac(C, S, B) \
  177. do { \
  178. if (rc_stat) { \
  179. rc_stat[*(S)][B]++; \
  180. rc_stat2[(S) - state][B]++; \
  181. } \
  182. put_rac(C, S, B); \
  183. } while (0)
  184. if (v) {
  185. const unsigned a = is_signed ? FFABS(v) : v;
  186. const int e = av_log2(a);
  187. put_rac(c, state + 0, 0);
  188. if (e <= 9) {
  189. for (i = 0; i < e; i++)
  190. put_rac(c, state + 1 + i, 1); // 1..10
  191. put_rac(c, state + 1 + i, 0);
  192. for (i = e - 1; i >= 0; i--)
  193. put_rac(c, state + 22 + i, (a >> i) & 1); // 22..31
  194. if (is_signed)
  195. put_rac(c, state + 11 + e, v < 0); // 11..21
  196. } else {
  197. for (i = 0; i < e; i++)
  198. put_rac(c, state + 1 + FFMIN(i, 9), 1); // 1..10
  199. put_rac(c, state + 1 + 9, 0);
  200. for (i = e - 1; i >= 0; i--)
  201. put_rac(c, state + 22 + FFMIN(i, 9), (a >> i) & 1); // 22..31
  202. if (is_signed)
  203. put_rac(c, state + 11 + 10, v < 0); // 11..21
  204. }
  205. } else {
  206. put_rac(c, state + 0, 1);
  207. }
  208. #undef put_rac
  209. }
  210. static av_noinline void put_symbol(RangeCoder *c, uint8_t *state,
  211. int v, int is_signed)
  212. {
  213. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  214. }
  215. static inline void put_vlc_symbol(PutBitContext *pb, VlcState *const state,
  216. int v, int bits)
  217. {
  218. int i, k, code;
  219. v = fold(v - state->bias, bits);
  220. i = state->count;
  221. k = 0;
  222. while (i < state->error_sum) { // FIXME: optimize
  223. k++;
  224. i += i;
  225. }
  226. av_assert2(k <= 16);
  227. code = v ^ ((2 * state->drift + state->count) >> 31);
  228. ff_dlog(NULL, "v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code,
  229. state->bias, state->error_sum, state->drift, state->count, k);
  230. set_sr_golomb(pb, code, k, 12, bits);
  231. update_vlc_state(state, v);
  232. }
  233. #define TYPE int16_t
  234. #define RENAME(name) name
  235. #include "ffv1enc_template.c"
  236. #undef TYPE
  237. #undef RENAME
  238. #define TYPE int32_t
  239. #define RENAME(name) name ## 32
  240. #include "ffv1enc_template.c"
  241. static int encode_plane(FFV1Context *f, FFV1SliceContext *sc,
  242. const uint8_t *src, int w, int h,
  243. int stride, int plane_index, int remap_index, int pixel_stride, int ac)
  244. {
  245. int x, y, i, ret;
  246. const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
  247. const int ring_size = f->context_model ? 3 : 2;
  248. int16_t *sample[3];
  249. sc->run_index = 0;
  250. sample[2] = sc->sample_buffer; // dummy to avoid UB pointer arithmetic
  251. memset(sc->sample_buffer, 0, ring_size * (w + 6) * sizeof(*sc->sample_buffer));
  252. for (y = 0; y < h; y++) {
  253. for (i = 0; i < ring_size; i++)
  254. sample[i] = sc->sample_buffer + (w + 6) * ((h + i - y) % ring_size) + 3;
  255. sample[0][-1]= sample[1][0 ];
  256. sample[1][ w]= sample[1][w-1];
  257. if (f->bits_per_raw_sample <= 8) {
  258. for (x = 0; x < w; x++)
  259. sample[0][x] = src[x * pixel_stride + stride * y];
  260. if (sc->remap)
  261. for (x = 0; x < w; x++)
  262. sample[0][x] = sc->fltmap[remap_index][ sample[0][x] ];
  263. if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, 8, ac, pass1)) < 0)
  264. return ret;
  265. } else {
  266. if (f->packed_at_lsb) {
  267. for (x = 0; x < w; x++) {
  268. sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride];
  269. }
  270. } else {
  271. for (x = 0; x < w; x++) {
  272. sample[0][x] = ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample);
  273. }
  274. }
  275. if (sc->remap)
  276. for (x = 0; x < w; x++)
  277. sample[0][x] = sc->fltmap[remap_index][ (uint16_t)sample[0][x] ];
  278. if((ret = encode_line(f, sc, f->avctx, w, sample, plane_index, f->bits_per_raw_sample, ac, pass1)) < 0)
  279. return ret;
  280. }
  281. }
  282. return 0;
  283. }
  284. static void load_plane(FFV1Context *f, FFV1SliceContext *sc,
  285. const uint8_t *src, int w, int h,
  286. int stride, int remap_index, int pixel_stride)
  287. {
  288. int x, y;
  289. memset(sc->fltmap[remap_index], 0, 65536 * sizeof(*sc->fltmap[remap_index]));
  290. for (y = 0; y < h; y++) {
  291. if (f->bits_per_raw_sample <= 8) {
  292. for (x = 0; x < w; x++)
  293. sc->fltmap[remap_index][ src[x * pixel_stride + stride * y] ] = 1;
  294. } else {
  295. if (f->packed_at_lsb) {
  296. for (x = 0; x < w; x++)
  297. sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] ] = 1;
  298. } else {
  299. for (x = 0; x < w; x++)
  300. sc->fltmap[remap_index][ ((uint16_t*)(src + stride*y))[x * pixel_stride] >> (16 - f->bits_per_raw_sample) ] = 1;
  301. }
  302. }
  303. }
  304. }
  305. static void write_quant_table(RangeCoder *c, int16_t *quant_table)
  306. {
  307. int last = 0;
  308. int i;
  309. uint8_t state[CONTEXT_SIZE];
  310. memset(state, 128, sizeof(state));
  311. for (i = 1; i < MAX_QUANT_TABLE_SIZE/2; i++)
  312. if (quant_table[i] != quant_table[i - 1]) {
  313. put_symbol(c, state, i - last - 1, 0);
  314. last = i;
  315. }
  316. put_symbol(c, state, i - last - 1, 0);
  317. }
  318. static void write_quant_tables(RangeCoder *c,
  319. int16_t quant_table[MAX_CONTEXT_INPUTS][MAX_QUANT_TABLE_SIZE])
  320. {
  321. int i;
  322. for (i = 0; i < 5; i++)
  323. write_quant_table(c, quant_table[i]);
  324. }
  325. static int contains_non_128(uint8_t (*initial_state)[CONTEXT_SIZE],
  326. int nb_contexts)
  327. {
  328. if (!initial_state)
  329. return 0;
  330. for (int i = 0; i < nb_contexts; i++)
  331. for (int j = 0; j < CONTEXT_SIZE; j++)
  332. if (initial_state[i][j] != 128)
  333. return 1;
  334. return 0;
  335. }
  336. static void write_header(FFV1Context *f)
  337. {
  338. uint8_t state[CONTEXT_SIZE];
  339. int i, j;
  340. RangeCoder *const c = &f->slices[0].c;
  341. memset(state, 128, sizeof(state));
  342. if (f->version < 2) {
  343. put_symbol(c, state, f->version, 0);
  344. put_symbol(c, state, f->ac, 0);
  345. if (f->ac == AC_RANGE_CUSTOM_TAB) {
  346. for (i = 1; i < 256; i++)
  347. put_symbol(c, state,
  348. f->state_transition[i] - c->one_state[i], 1);
  349. }
  350. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  351. if (f->version > 0)
  352. put_symbol(c, state, f->bits_per_raw_sample, 0);
  353. put_rac(c, state, f->chroma_planes);
  354. put_symbol(c, state, f->chroma_h_shift, 0);
  355. put_symbol(c, state, f->chroma_v_shift, 0);
  356. put_rac(c, state, f->transparency);
  357. write_quant_tables(c, f->quant_tables[f->context_model]);
  358. } else if (f->version < 3) {
  359. put_symbol(c, state, f->slice_count, 0);
  360. for (i = 0; i < f->slice_count; i++) {
  361. FFV1SliceContext *fs = &f->slices[i];
  362. put_symbol(c, state,
  363. (fs->slice_x + 1) * f->num_h_slices / f->width, 0);
  364. put_symbol(c, state,
  365. (fs->slice_y + 1) * f->num_v_slices / f->height, 0);
  366. put_symbol(c, state,
  367. (fs->slice_width + 1) * f->num_h_slices / f->width - 1,
  368. 0);
  369. put_symbol(c, state,
  370. (fs->slice_height + 1) * f->num_v_slices / f->height - 1,
  371. 0);
  372. for (j = 0; j < f->plane_count; j++) {
  373. put_symbol(c, state, fs->plane[j].quant_table_index, 0);
  374. av_assert0(fs->plane[j].quant_table_index == f->context_model);
  375. }
  376. }
  377. }
  378. }
  379. static void set_micro_version(FFV1Context *f)
  380. {
  381. f->combined_version = f->version << 16;
  382. if (f->version > 2) {
  383. if (f->version == 3) {
  384. f->micro_version = 4;
  385. } else if (f->version == 4) {
  386. f->micro_version = 8;
  387. } else
  388. av_assert0(0);
  389. f->combined_version += f->micro_version;
  390. } else
  391. av_assert0(f->micro_version == 0);
  392. }
  393. av_cold int ff_ffv1_write_extradata(AVCodecContext *avctx)
  394. {
  395. FFV1Context *f = avctx->priv_data;
  396. RangeCoder c;
  397. uint8_t state[CONTEXT_SIZE];
  398. int i, j, k;
  399. uint8_t state2[32][CONTEXT_SIZE];
  400. unsigned v;
  401. memset(state2, 128, sizeof(state2));
  402. memset(state, 128, sizeof(state));
  403. f->avctx->extradata_size = 10000 + 4 +
  404. (11 * 11 * 5 * 5 * 5 + 11 * 11 * 11) * 32;
  405. f->avctx->extradata = av_malloc(f->avctx->extradata_size + AV_INPUT_BUFFER_PADDING_SIZE);
  406. if (!f->avctx->extradata)
  407. return AVERROR(ENOMEM);
  408. ff_init_range_encoder(&c, f->avctx->extradata, f->avctx->extradata_size);
  409. ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
  410. put_symbol(&c, state, f->version, 0);
  411. if (f->version > 2)
  412. put_symbol(&c, state, f->micro_version, 0);
  413. put_symbol(&c, state, f->ac, 0);
  414. if (f->ac == AC_RANGE_CUSTOM_TAB)
  415. for (i = 1; i < 256; i++)
  416. put_symbol(&c, state, f->state_transition[i] - c.one_state[i], 1);
  417. put_symbol(&c, state, f->colorspace, 0); // YUV cs type
  418. put_symbol(&c, state, f->bits_per_raw_sample, 0);
  419. put_rac(&c, state, f->chroma_planes);
  420. put_symbol(&c, state, f->chroma_h_shift, 0);
  421. put_symbol(&c, state, f->chroma_v_shift, 0);
  422. put_rac(&c, state, f->transparency);
  423. put_symbol(&c, state, f->num_h_slices - 1, 0);
  424. put_symbol(&c, state, f->num_v_slices - 1, 0);
  425. put_symbol(&c, state, f->quant_table_count, 0);
  426. for (i = 0; i < f->quant_table_count; i++)
  427. write_quant_tables(&c, f->quant_tables[i]);
  428. for (i = 0; i < f->quant_table_count; i++) {
  429. if (contains_non_128(f->initial_states[i], f->context_count[i])) {
  430. put_rac(&c, state, 1);
  431. for (j = 0; j < f->context_count[i]; j++)
  432. for (k = 0; k < CONTEXT_SIZE; k++) {
  433. int pred = j ? f->initial_states[i][j - 1][k] : 128;
  434. put_symbol(&c, state2[k],
  435. (int8_t)(f->initial_states[i][j][k] - pred), 1);
  436. }
  437. } else {
  438. put_rac(&c, state, 0);
  439. }
  440. }
  441. if (f->version > 2) {
  442. put_symbol(&c, state, f->ec, 0);
  443. put_symbol(&c, state, f->intra = (f->avctx->gop_size < 2), 0);
  444. }
  445. f->avctx->extradata_size = ff_rac_terminate(&c, 0);
  446. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, f->avctx->extradata, f->avctx->extradata_size) ^ (f->crcref ? 0x8CD88196 : 0);
  447. AV_WL32(f->avctx->extradata + f->avctx->extradata_size, v);
  448. f->avctx->extradata_size += 4;
  449. return 0;
  450. }
  451. static int sort_stt(FFV1Context *s, uint8_t stt[256])
  452. {
  453. int i, i2, changed, print = 0;
  454. do {
  455. changed = 0;
  456. for (i = 12; i < 244; i++) {
  457. for (i2 = i + 1; i2 < 245 && i2 < i + 4; i2++) {
  458. #define COST(old, new) \
  459. s->rc_stat[old][0] * -log2((256 - (new)) / 256.0) + \
  460. s->rc_stat[old][1] * -log2((new) / 256.0)
  461. #define COST2(old, new) \
  462. COST(old, new) + COST(256 - (old), 256 - (new))
  463. double size0 = COST2(i, i) + COST2(i2, i2);
  464. double sizeX = COST2(i, i2) + COST2(i2, i);
  465. if (size0 - sizeX > size0*(1e-14) && i != 128 && i2 != 128) {
  466. int j;
  467. FFSWAP(int, stt[i], stt[i2]);
  468. FFSWAP(int, s->rc_stat[i][0], s->rc_stat[i2][0]);
  469. FFSWAP(int, s->rc_stat[i][1], s->rc_stat[i2][1]);
  470. if (i != 256 - i2) {
  471. FFSWAP(int, stt[256 - i], stt[256 - i2]);
  472. FFSWAP(int, s->rc_stat[256 - i][0], s->rc_stat[256 - i2][0]);
  473. FFSWAP(int, s->rc_stat[256 - i][1], s->rc_stat[256 - i2][1]);
  474. }
  475. for (j = 1; j < 256; j++) {
  476. if (stt[j] == i)
  477. stt[j] = i2;
  478. else if (stt[j] == i2)
  479. stt[j] = i;
  480. if (i != 256 - i2) {
  481. if (stt[256 - j] == 256 - i)
  482. stt[256 - j] = 256 - i2;
  483. else if (stt[256 - j] == 256 - i2)
  484. stt[256 - j] = 256 - i;
  485. }
  486. }
  487. print = changed = 1;
  488. }
  489. }
  490. }
  491. } while (changed);
  492. return print;
  493. }
  494. int ff_ffv1_encode_determine_slices(AVCodecContext *avctx)
  495. {
  496. FFV1Context *s = avctx->priv_data;
  497. int plane_count = 1 + 2*s->chroma_planes + s->transparency;
  498. int max_h_slices = AV_CEIL_RSHIFT(avctx->width , s->chroma_h_shift);
  499. int max_v_slices = AV_CEIL_RSHIFT(avctx->height, s->chroma_v_shift);
  500. s->num_v_slices = (avctx->width > 352 || avctx->height > 288 || !avctx->slices) ? 2 : 1;
  501. s->num_v_slices = FFMIN(s->num_v_slices, max_v_slices);
  502. for (; s->num_v_slices <= 32; s->num_v_slices++) {
  503. for (s->num_h_slices = s->num_v_slices; s->num_h_slices <= 2*s->num_v_slices; s->num_h_slices++) {
  504. int maxw = (avctx->width + s->num_h_slices - 1) / s->num_h_slices;
  505. int maxh = (avctx->height + s->num_v_slices - 1) / s->num_v_slices;
  506. if (s->num_h_slices > max_h_slices || s->num_v_slices > max_v_slices)
  507. continue;
  508. if (maxw * maxh * (int64_t)(s->bits_per_raw_sample+1) * plane_count > 8<<24)
  509. continue;
  510. if (s->version < 4)
  511. if ( ff_need_new_slices(avctx->width , s->num_h_slices, s->chroma_h_shift)
  512. ||ff_need_new_slices(avctx->height, s->num_v_slices, s->chroma_v_shift))
  513. continue;
  514. if (avctx->slices == s->num_h_slices * s->num_v_slices && avctx->slices <= MAX_SLICES)
  515. return 0;
  516. if (maxw*maxh > 360*288)
  517. continue;
  518. if (!avctx->slices)
  519. return 0;
  520. }
  521. }
  522. av_log(avctx, AV_LOG_ERROR,
  523. "Unsupported number %d of slices requested, please specify a "
  524. "supported number with -slices (ex:4,6,9,12,16, ...)\n",
  525. avctx->slices);
  526. return AVERROR(ENOSYS);
  527. }
  528. av_cold int ff_ffv1_encode_init(AVCodecContext *avctx)
  529. {
  530. FFV1Context *s = avctx->priv_data;
  531. int i, j, k, m, ret;
  532. if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) ||
  533. avctx->slices > 1)
  534. s->version = FFMAX(s->version, 2);
  535. if ((avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) && s->ac == AC_GOLOMB_RICE) {
  536. av_log(avctx, AV_LOG_ERROR, "2 Pass mode is not possible with golomb coding\n");
  537. return AVERROR(EINVAL);
  538. }
  539. // Unspecified level & slices, we choose version 1.2+ to ensure multithreaded decodability
  540. if (avctx->slices == 0 && avctx->level < 0 && avctx->width * avctx->height > 720*576)
  541. s->version = FFMAX(s->version, 2);
  542. if (avctx->level <= 0 && s->version == 2) {
  543. s->version = 3;
  544. }
  545. if (avctx->level >= 0 && avctx->level <= 4) {
  546. if (avctx->level < s->version) {
  547. av_log(avctx, AV_LOG_ERROR, "Version %d needed for requested features but %d requested\n", s->version, avctx->level);
  548. return AVERROR(EINVAL);
  549. }
  550. s->version = avctx->level;
  551. } else if (s->version < 3)
  552. s->version = 3;
  553. if (s->ec < 0) {
  554. if (s->version >= 4) {
  555. s->ec = 2;
  556. } else if (s->version >= 3) {
  557. s->ec = 1;
  558. } else
  559. s->ec = 0;
  560. }
  561. // CRC requires version 3+
  562. if (s->ec == 1)
  563. s->version = FFMAX(s->version, 3);
  564. if (s->ec == 2) {
  565. s->version = FFMAX(s->version, 4);
  566. s->crcref = 0x7a8c4079;
  567. }
  568. if ((s->version == 2 || s->version>3) && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
  569. av_log(avctx, AV_LOG_ERROR, "Version 2 or 4 needed for requested features but version 2 or 4 is experimental and not enabled\n");
  570. return AVERROR_INVALIDDATA;
  571. }
  572. if (s->ac == AC_RANGE_CUSTOM_TAB) {
  573. for (i = 1; i < 256; i++)
  574. s->state_transition[i] = ver2_state[i];
  575. } else {
  576. RangeCoder c;
  577. ff_build_rac_states(&c, 0.05 * (1LL << 32), 256 - 8);
  578. for (i = 1; i < 256; i++)
  579. s->state_transition[i] = c.one_state[i];
  580. }
  581. for (i = 0; i < 256; i++) {
  582. s->quant_table_count = 2;
  583. if ((s->qtable == -1 && s->bits_per_raw_sample <= 8) || s->qtable == 1) {
  584. s->quant_tables[0][0][i]= quant11[i];
  585. s->quant_tables[0][1][i]= 11*quant11[i];
  586. s->quant_tables[0][2][i]= 11*11*quant11[i];
  587. s->quant_tables[1][0][i]= quant11[i];
  588. s->quant_tables[1][1][i]= 11*quant11[i];
  589. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  590. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  591. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  592. s->context_count[0] = (11 * 11 * 11 + 1) / 2;
  593. s->context_count[1] = (11 * 11 * 5 * 5 * 5 + 1) / 2;
  594. } else {
  595. s->quant_tables[0][0][i]= quant9_10bit[i];
  596. s->quant_tables[0][1][i]= 9*quant9_10bit[i];
  597. s->quant_tables[0][2][i]= 9*9*quant9_10bit[i];
  598. s->quant_tables[1][0][i]= quant9_10bit[i];
  599. s->quant_tables[1][1][i]= 9*quant9_10bit[i];
  600. s->quant_tables[1][2][i]= 9*9*quant5_10bit[i];
  601. s->quant_tables[1][3][i]= 5*9*9*quant5_10bit[i];
  602. s->quant_tables[1][4][i]= 5*5*9*9*quant5_10bit[i];
  603. s->context_count[0] = (9 * 9 * 9 + 1) / 2;
  604. s->context_count[1] = (9 * 9 * 5 * 5 * 5 + 1) / 2;
  605. }
  606. }
  607. if ((ret = ff_ffv1_allocate_initial_states(s)) < 0)
  608. return ret;
  609. if (!s->transparency)
  610. s->plane_count = 2;
  611. if (!s->chroma_planes && s->version > 3)
  612. s->plane_count--;
  613. s->picture_number = 0;
  614. if (avctx->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
  615. for (i = 0; i < s->quant_table_count; i++) {
  616. s->rc_stat2[i] = av_mallocz(s->context_count[i] *
  617. sizeof(*s->rc_stat2[i]));
  618. if (!s->rc_stat2[i])
  619. return AVERROR(ENOMEM);
  620. }
  621. }
  622. if (avctx->stats_in) {
  623. char *p = avctx->stats_in;
  624. uint8_t (*best_state)[256] = av_malloc_array(256, 256);
  625. int gob_count = 0;
  626. char *next;
  627. if (!best_state)
  628. return AVERROR(ENOMEM);
  629. av_assert0(s->version >= 2);
  630. for (;;) {
  631. for (j = 0; j < 256; j++)
  632. for (i = 0; i < 2; i++) {
  633. s->rc_stat[j][i] = strtol(p, &next, 0);
  634. if (next == p) {
  635. av_log(avctx, AV_LOG_ERROR,
  636. "2Pass file invalid at %d %d [%s]\n", j, i, p);
  637. av_freep(&best_state);
  638. return AVERROR_INVALIDDATA;
  639. }
  640. p = next;
  641. }
  642. for (i = 0; i < s->quant_table_count; i++)
  643. for (j = 0; j < s->context_count[i]; j++) {
  644. for (k = 0; k < 32; k++)
  645. for (m = 0; m < 2; m++) {
  646. s->rc_stat2[i][j][k][m] = strtol(p, &next, 0);
  647. if (next == p) {
  648. av_log(avctx, AV_LOG_ERROR,
  649. "2Pass file invalid at %d %d %d %d [%s]\n",
  650. i, j, k, m, p);
  651. av_freep(&best_state);
  652. return AVERROR_INVALIDDATA;
  653. }
  654. p = next;
  655. }
  656. }
  657. gob_count = strtol(p, &next, 0);
  658. if (next == p || gob_count <= 0) {
  659. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  660. av_freep(&best_state);
  661. return AVERROR_INVALIDDATA;
  662. }
  663. p = next;
  664. while (*p == '\n' || *p == ' ')
  665. p++;
  666. if (p[0] == 0)
  667. break;
  668. }
  669. if (s->ac == AC_RANGE_CUSTOM_TAB)
  670. sort_stt(s, s->state_transition);
  671. find_best_state(best_state, s->state_transition);
  672. for (i = 0; i < s->quant_table_count; i++) {
  673. for (k = 0; k < 32; k++) {
  674. double a=0, b=0;
  675. int jp = 0;
  676. for (j = 0; j < s->context_count[i]; j++) {
  677. double p = 128;
  678. if (s->rc_stat2[i][j][k][0] + s->rc_stat2[i][j][k][1] > 200 && j || a+b > 200) {
  679. if (a+b)
  680. p = 256.0 * b / (a + b);
  681. s->initial_states[i][jp][k] =
  682. best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
  683. for(jp++; jp<j; jp++)
  684. s->initial_states[i][jp][k] = s->initial_states[i][jp-1][k];
  685. a=b=0;
  686. }
  687. a += s->rc_stat2[i][j][k][0];
  688. b += s->rc_stat2[i][j][k][1];
  689. if (a+b) {
  690. p = 256.0 * b / (a + b);
  691. }
  692. s->initial_states[i][j][k] =
  693. best_state[av_clip(round(p), 1, 255)][av_clip_uint8((a + b) / gob_count)];
  694. }
  695. }
  696. }
  697. av_freep(&best_state);
  698. }
  699. if (s->version <= 1) {
  700. /* Disable slices when the version doesn't support them */
  701. s->num_h_slices = 1;
  702. s->num_v_slices = 1;
  703. }
  704. set_micro_version(s);
  705. return 0;
  706. }
  707. av_cold int ff_ffv1_encode_setup_plane_info(AVCodecContext *avctx,
  708. enum AVPixelFormat pix_fmt)
  709. {
  710. FFV1Context *s = avctx->priv_data;
  711. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
  712. s->plane_count = 3;
  713. switch(pix_fmt) {
  714. case AV_PIX_FMT_GRAY9:
  715. case AV_PIX_FMT_YUV444P9:
  716. case AV_PIX_FMT_YUV422P9:
  717. case AV_PIX_FMT_YUV420P9:
  718. case AV_PIX_FMT_YUVA444P9:
  719. case AV_PIX_FMT_YUVA422P9:
  720. case AV_PIX_FMT_YUVA420P9:
  721. if (!avctx->bits_per_raw_sample)
  722. s->bits_per_raw_sample = 9;
  723. case AV_PIX_FMT_GRAY10:
  724. case AV_PIX_FMT_YUV444P10:
  725. case AV_PIX_FMT_YUV440P10:
  726. case AV_PIX_FMT_YUV420P10:
  727. case AV_PIX_FMT_YUV422P10:
  728. case AV_PIX_FMT_YUVA444P10:
  729. case AV_PIX_FMT_YUVA422P10:
  730. case AV_PIX_FMT_YUVA420P10:
  731. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  732. s->bits_per_raw_sample = 10;
  733. case AV_PIX_FMT_GRAY12:
  734. case AV_PIX_FMT_YUV444P12:
  735. case AV_PIX_FMT_YUV440P12:
  736. case AV_PIX_FMT_YUV420P12:
  737. case AV_PIX_FMT_YUV422P12:
  738. case AV_PIX_FMT_YUVA444P12:
  739. case AV_PIX_FMT_YUVA422P12:
  740. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  741. s->bits_per_raw_sample = 12;
  742. case AV_PIX_FMT_GRAY14:
  743. case AV_PIX_FMT_YUV444P14:
  744. case AV_PIX_FMT_YUV420P14:
  745. case AV_PIX_FMT_YUV422P14:
  746. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  747. s->bits_per_raw_sample = 14;
  748. s->packed_at_lsb = 1;
  749. case AV_PIX_FMT_GRAY16:
  750. case AV_PIX_FMT_P016:
  751. case AV_PIX_FMT_P216:
  752. case AV_PIX_FMT_P416:
  753. case AV_PIX_FMT_YUV444P16:
  754. case AV_PIX_FMT_YUV422P16:
  755. case AV_PIX_FMT_YUV420P16:
  756. case AV_PIX_FMT_YUVA444P16:
  757. case AV_PIX_FMT_YUVA422P16:
  758. case AV_PIX_FMT_YUVA420P16:
  759. case AV_PIX_FMT_GRAYF16:
  760. case AV_PIX_FMT_YAF16:
  761. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample) {
  762. s->bits_per_raw_sample = 16;
  763. } else if (!s->bits_per_raw_sample) {
  764. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  765. }
  766. if (s->bits_per_raw_sample <= 8) {
  767. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  768. return AVERROR_INVALIDDATA;
  769. }
  770. s->version = FFMAX(s->version, 1);
  771. case AV_PIX_FMT_GRAY8:
  772. case AV_PIX_FMT_YA8:
  773. case AV_PIX_FMT_NV12:
  774. case AV_PIX_FMT_NV16:
  775. case AV_PIX_FMT_NV24:
  776. case AV_PIX_FMT_YUV444P:
  777. case AV_PIX_FMT_YUV440P:
  778. case AV_PIX_FMT_YUV422P:
  779. case AV_PIX_FMT_YUV420P:
  780. case AV_PIX_FMT_YUV411P:
  781. case AV_PIX_FMT_YUV410P:
  782. case AV_PIX_FMT_YUVA444P:
  783. case AV_PIX_FMT_YUVA422P:
  784. case AV_PIX_FMT_YUVA420P:
  785. s->chroma_planes = desc->nb_components < 3 ? 0 : 1;
  786. s->colorspace = 0;
  787. s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
  788. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  789. s->bits_per_raw_sample = 8;
  790. else if (!s->bits_per_raw_sample)
  791. s->bits_per_raw_sample = 8;
  792. break;
  793. case AV_PIX_FMT_RGB32:
  794. s->colorspace = 1;
  795. s->transparency = 1;
  796. s->chroma_planes = 1;
  797. s->bits_per_raw_sample = 8;
  798. break;
  799. case AV_PIX_FMT_RGBA64:
  800. s->colorspace = 1;
  801. s->transparency = 1;
  802. s->chroma_planes = 1;
  803. s->bits_per_raw_sample = 16;
  804. s->use32bit = 1;
  805. s->version = FFMAX(s->version, 1);
  806. break;
  807. case AV_PIX_FMT_RGB48:
  808. s->colorspace = 1;
  809. s->chroma_planes = 1;
  810. s->bits_per_raw_sample = 16;
  811. s->use32bit = 1;
  812. s->version = FFMAX(s->version, 1);
  813. break;
  814. case AV_PIX_FMT_0RGB32:
  815. s->colorspace = 1;
  816. s->chroma_planes = 1;
  817. s->bits_per_raw_sample = 8;
  818. break;
  819. case AV_PIX_FMT_GBRP9:
  820. if (!avctx->bits_per_raw_sample)
  821. s->bits_per_raw_sample = 9;
  822. case AV_PIX_FMT_GBRP10:
  823. case AV_PIX_FMT_GBRAP10:
  824. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  825. s->bits_per_raw_sample = 10;
  826. case AV_PIX_FMT_GBRP12:
  827. case AV_PIX_FMT_GBRAP12:
  828. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  829. s->bits_per_raw_sample = 12;
  830. case AV_PIX_FMT_GBRP14:
  831. case AV_PIX_FMT_GBRAP14:
  832. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  833. s->bits_per_raw_sample = 14;
  834. case AV_PIX_FMT_GBRP16:
  835. case AV_PIX_FMT_GBRAP16:
  836. case AV_PIX_FMT_GBRPF16:
  837. case AV_PIX_FMT_GBRAPF16:
  838. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  839. s->bits_per_raw_sample = 16;
  840. case AV_PIX_FMT_GBRPF32:
  841. case AV_PIX_FMT_GBRAPF32:
  842. if (!avctx->bits_per_raw_sample && !s->bits_per_raw_sample)
  843. s->bits_per_raw_sample = 32;
  844. else if (!s->bits_per_raw_sample)
  845. s->bits_per_raw_sample = avctx->bits_per_raw_sample;
  846. s->transparency = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
  847. s->colorspace = 1;
  848. s->chroma_planes = 1;
  849. if (s->bits_per_raw_sample >= 16) {
  850. s->use32bit = 1;
  851. }
  852. s->version = FFMAX(s->version, 1);
  853. break;
  854. default:
  855. av_log(avctx, AV_LOG_ERROR, "format %s not supported\n",
  856. av_get_pix_fmt_name(pix_fmt));
  857. return AVERROR(ENOSYS);
  858. }
  859. s->flt = !!(desc->flags & AV_PIX_FMT_FLAG_FLOAT);
  860. if (s->flt || s->remap_mode > 0)
  861. s->version = FFMAX(s->version, 4);
  862. av_assert0(s->bits_per_raw_sample >= 8);
  863. if (s->remap_mode < 0)
  864. s->remap_mode = s->flt ? 2 : 0;
  865. if (s->remap_mode == 0 && s->bits_per_raw_sample == 32) {
  866. av_log(avctx, AV_LOG_ERROR, "32bit requires remap\n");
  867. return AVERROR(EINVAL);
  868. }
  869. if (s->remap_mode == 2 &&
  870. !((s->bits_per_raw_sample == 16 || s->bits_per_raw_sample == 32 || s->bits_per_raw_sample == 64) && s->flt)) {
  871. av_log(avctx, AV_LOG_ERROR, "remap 2 is for float16/32/64 only\n");
  872. return AVERROR(EINVAL);
  873. }
  874. return av_pix_fmt_get_chroma_sub_sample(pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  875. }
  876. static av_cold int encode_init_internal(AVCodecContext *avctx)
  877. {
  878. int ret;
  879. FFV1Context *s = avctx->priv_data;
  880. if ((ret = ff_ffv1_common_init(avctx, s)) < 0)
  881. return ret;
  882. if (s->ac == 1) // Compatibility with common command line usage
  883. s->ac = AC_RANGE_CUSTOM_TAB;
  884. else if (s->ac == AC_RANGE_DEFAULT_TAB_FORCE)
  885. s->ac = AC_RANGE_DEFAULT_TAB;
  886. ret = ff_ffv1_encode_setup_plane_info(avctx, avctx->pix_fmt);
  887. if (ret < 0)
  888. return ret;
  889. if (s->bits_per_raw_sample > (s->version > 3 ? 16 : 8) && !s->remap_mode) {
  890. if (s->ac == AC_GOLOMB_RICE) {
  891. av_log(avctx, AV_LOG_INFO,
  892. "high bits_per_raw_sample, forcing range coder\n");
  893. s->ac = AC_RANGE_CUSTOM_TAB;
  894. }
  895. }
  896. ret = ff_ffv1_encode_init(avctx);
  897. if (ret < 0)
  898. return ret;
  899. if (s->version > 1) {
  900. if ((ret = ff_ffv1_encode_determine_slices(avctx)) < 0)
  901. return ret;
  902. if ((ret = ff_ffv1_write_extradata(avctx)) < 0)
  903. return ret;
  904. }
  905. if ((ret = ff_ffv1_init_slice_contexts(s)) < 0)
  906. return ret;
  907. s->slice_count = s->max_slice_count;
  908. for (int j = 0; j < s->slice_count; j++) {
  909. FFV1SliceContext *sc = &s->slices[j];
  910. for (int i = 0; i < s->plane_count; i++) {
  911. PlaneContext *const p = &s->slices[j].plane[i];
  912. p->quant_table_index = s->context_model;
  913. p->context_count = s->context_count[p->quant_table_index];
  914. }
  915. av_assert0(s->remap_mode >= 0);
  916. if (s->remap_mode) {
  917. for (int p = 0; p < 1 + 2*s->chroma_planes + s->transparency ; p++) {
  918. if (s->bits_per_raw_sample == 32) {
  919. sc->unit[p] = av_malloc_array(sc->slice_width, sc->slice_height * sizeof(**sc->unit));
  920. if (!sc->unit[p])
  921. return AVERROR(ENOMEM);
  922. sc->bitmap[p] = av_malloc_array(sc->slice_width * sc->slice_height, sizeof(*sc->bitmap[p]));
  923. if (!sc->bitmap[p])
  924. return AVERROR(ENOMEM);
  925. } else {
  926. sc->fltmap[p] = av_malloc_array(65536, sizeof(*sc->fltmap[p]));
  927. if (!sc->fltmap[p])
  928. return AVERROR(ENOMEM);
  929. }
  930. }
  931. }
  932. ff_build_rac_states(&s->slices[j].c, 0.05 * (1LL << 32), 256 - 8);
  933. s->slices[j].remap = s->remap_mode;
  934. }
  935. if ((ret = ff_ffv1_init_slices_state(s)) < 0)
  936. return ret;
  937. #define STATS_OUT_SIZE 1024 * 1024 * 6
  938. if (avctx->flags & AV_CODEC_FLAG_PASS1) {
  939. avctx->stats_out = av_mallocz(STATS_OUT_SIZE);
  940. if (!avctx->stats_out)
  941. return AVERROR(ENOMEM);
  942. for (int i = 0; i < s->quant_table_count; i++)
  943. for (int j = 0; j < s->max_slice_count; j++) {
  944. FFV1SliceContext *sc = &s->slices[j];
  945. av_assert0(!sc->rc_stat2[i]);
  946. sc->rc_stat2[i] = av_mallocz(s->context_count[i] *
  947. sizeof(*sc->rc_stat2[i]));
  948. if (!sc->rc_stat2[i])
  949. return AVERROR(ENOMEM);
  950. }
  951. }
  952. return 0;
  953. }
  954. static void encode_slice_header(FFV1Context *f, FFV1SliceContext *sc)
  955. {
  956. RangeCoder *c = &sc->c;
  957. uint8_t state[CONTEXT_SIZE];
  958. int j;
  959. memset(state, 128, sizeof(state));
  960. put_symbol(c, state, sc->sx, 0);
  961. put_symbol(c, state, sc->sy, 0);
  962. put_symbol(c, state, 0, 0);
  963. put_symbol(c, state, 0, 0);
  964. for (j=0; j<f->plane_count; j++) {
  965. put_symbol(c, state, sc->plane[j].quant_table_index, 0);
  966. av_assert0(sc->plane[j].quant_table_index == f->context_model);
  967. }
  968. if (!(f->cur_enc_frame->flags & AV_FRAME_FLAG_INTERLACED))
  969. put_symbol(c, state, 3, 0);
  970. else
  971. put_symbol(c, state, 1 + !(f->cur_enc_frame->flags & AV_FRAME_FLAG_TOP_FIELD_FIRST), 0);
  972. put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.num, 0);
  973. put_symbol(c, state, f->cur_enc_frame->sample_aspect_ratio.den, 0);
  974. if (f->version > 3) {
  975. put_rac(c, state, sc->slice_coding_mode == 1);
  976. if (sc->slice_coding_mode == 1)
  977. ff_ffv1_clear_slice_state(f, sc);
  978. put_symbol(c, state, sc->slice_coding_mode, 0);
  979. if (sc->slice_coding_mode != 1 && f->colorspace == 1) {
  980. put_symbol(c, state, sc->slice_rct_by_coef, 0);
  981. put_symbol(c, state, sc->slice_rct_ry_coef, 0);
  982. }
  983. put_symbol(c, state, sc->remap, 0);
  984. }
  985. }
  986. static void choose_rct_params(const FFV1Context *f, FFV1SliceContext *sc,
  987. const uint8_t *src[3], const int stride[3], int w, int h)
  988. {
  989. #define NB_Y_COEFF 15
  990. static const int rct_y_coeff[15][2] = {
  991. {0, 0}, // 4G
  992. {1, 1}, // R + 2G + B
  993. {2, 2}, // 2R + 2B
  994. {0, 2}, // 2G + 2B
  995. {2, 0}, // 2R + 2G
  996. {4, 0}, // 4R
  997. {0, 4}, // 4B
  998. {0, 3}, // 1G + 3B
  999. {3, 0}, // 3R + 1G
  1000. {3, 1}, // 3R + B
  1001. {1, 3}, // R + 3B
  1002. {1, 2}, // R + G + 2B
  1003. {2, 1}, // 2R + G + B
  1004. {0, 1}, // 3G + B
  1005. {1, 0}, // R + 3G
  1006. };
  1007. int stat[NB_Y_COEFF] = {0};
  1008. int x, y, i, p, best;
  1009. int16_t *sample[3];
  1010. int lbd = f->bits_per_raw_sample <= 8;
  1011. int packed = !src[1];
  1012. int transparency = f->transparency;
  1013. int packed_size = (3 + transparency)*2;
  1014. for (y = 0; y < h; y++) {
  1015. int lastr=0, lastg=0, lastb=0;
  1016. for (p = 0; p < 3; p++)
  1017. sample[p] = sc->sample_buffer + p*w;
  1018. for (x = 0; x < w; x++) {
  1019. int b, g, r;
  1020. int ab, ag, ar;
  1021. if (lbd) {
  1022. unsigned v = *((const uint32_t*)(src[0] + x*4 + stride[0]*y));
  1023. b = v & 0xFF;
  1024. g = (v >> 8) & 0xFF;
  1025. r = (v >> 16) & 0xFF;
  1026. } else if (packed) {
  1027. const uint16_t *p = ((const uint16_t*)(src[0] + x*packed_size + stride[0]*y));
  1028. r = p[0];
  1029. g = p[1];
  1030. b = p[2];
  1031. } else if (f->use32bit || transparency) {
  1032. g = *((const uint16_t *)(src[0] + x*2 + stride[0]*y));
  1033. b = *((const uint16_t *)(src[1] + x*2 + stride[1]*y));
  1034. r = *((const uint16_t *)(src[2] + x*2 + stride[2]*y));
  1035. } else {
  1036. b = *((const uint16_t*)(src[0] + x*2 + stride[0]*y));
  1037. g = *((const uint16_t*)(src[1] + x*2 + stride[1]*y));
  1038. r = *((const uint16_t*)(src[2] + x*2 + stride[2]*y));
  1039. }
  1040. ar = r - lastr;
  1041. ag = g - lastg;
  1042. ab = b - lastb;
  1043. if (x && y) {
  1044. int bg = ag - sample[0][x];
  1045. int bb = ab - sample[1][x];
  1046. int br = ar - sample[2][x];
  1047. br -= bg;
  1048. bb -= bg;
  1049. for (i = 0; i<NB_Y_COEFF; i++) {
  1050. stat[i] += FFABS(bg + ((br*rct_y_coeff[i][0] + bb*rct_y_coeff[i][1])>>2));
  1051. }
  1052. }
  1053. sample[0][x] = ag;
  1054. sample[1][x] = ab;
  1055. sample[2][x] = ar;
  1056. lastr = r;
  1057. lastg = g;
  1058. lastb = b;
  1059. }
  1060. }
  1061. best = 0;
  1062. for (i=1; i<NB_Y_COEFF; i++) {
  1063. if (stat[i] < stat[best])
  1064. best = i;
  1065. }
  1066. sc->slice_rct_by_coef = rct_y_coeff[best][1];
  1067. sc->slice_rct_ry_coef = rct_y_coeff[best][0];
  1068. }
  1069. static void encode_histogram_remap(FFV1Context *f, FFV1SliceContext *sc)
  1070. {
  1071. int len = 1 << f->bits_per_raw_sample;
  1072. int flip = sc->remap == 2 ? 0x7FFF : 0;
  1073. for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
  1074. int j = 0;
  1075. int lu = 0;
  1076. uint8_t state[2][32];
  1077. int run = 0;
  1078. memset(state, 128, sizeof(state));
  1079. put_symbol(&sc->c, state[0], 0, 0);
  1080. memset(state, 128, sizeof(state));
  1081. for (int i= 0; i<len; i++) {
  1082. int ri = i ^ ((i&0x8000) ? 0 : flip);
  1083. int u = sc->fltmap[p][ri];
  1084. sc->fltmap[p][ri] = j;
  1085. j+= u;
  1086. if (lu == u) {
  1087. run ++;
  1088. } else {
  1089. put_symbol_inline(&sc->c, state[lu], run, 0, NULL, NULL);
  1090. if (run == 0)
  1091. lu = u;
  1092. run = 0;
  1093. }
  1094. }
  1095. if (run)
  1096. put_symbol(&sc->c, state[lu], run, 0);
  1097. sc->remap_count[p] = j;
  1098. }
  1099. }
  1100. static void load_rgb_float32_frame(FFV1Context *f, FFV1SliceContext *sc,
  1101. const uint8_t *src[4],
  1102. int w, int h, const int stride[4])
  1103. {
  1104. int x, y;
  1105. int transparency = f->transparency;
  1106. int i = 0;
  1107. for (y = 0; y < h; y++) {
  1108. for (x = 0; x < w; x++) {
  1109. int b, g, r, av_uninit(a);
  1110. g = *((const uint32_t *)(src[0] + x*4 + stride[0]*y));
  1111. b = *((const uint32_t *)(src[1] + x*4 + stride[1]*y));
  1112. r = *((const uint32_t *)(src[2] + x*4 + stride[2]*y));
  1113. if (transparency)
  1114. a = *((const uint32_t *)(src[3] + x*4 + stride[3]*y));
  1115. if (sc->remap == 2) {
  1116. #define FLIP(f) (((f)&0x80000000) ? (f) : (f)^0x7FFFFFFF);
  1117. g = FLIP(g);
  1118. b = FLIP(b);
  1119. r = FLIP(r);
  1120. }
  1121. // We cannot build a histogram as we do for 16bit, we need a bit of magic here
  1122. // Its possible to reduce the memory needed at the cost of more dereferencing
  1123. sc->unit[0][i].val = g;
  1124. sc->unit[0][i].ndx = x + y*w;
  1125. sc->unit[1][i].val = b;
  1126. sc->unit[1][i].ndx = x + y*w;
  1127. sc->unit[2][i].val = r;
  1128. sc->unit[2][i].ndx = x + y*w;
  1129. if (transparency) {
  1130. sc->unit[3][i].val = a;
  1131. sc->unit[3][i].ndx = x + y*w;
  1132. }
  1133. i++;
  1134. }
  1135. }
  1136. //TODO switch to radix sort
  1137. #define CMP(A,B) ((A)->val - (int64_t)(B)->val)
  1138. AV_QSORT(sc->unit[0], i, struct Unit, CMP);
  1139. AV_QSORT(sc->unit[1], i, struct Unit, CMP);
  1140. AV_QSORT(sc->unit[2], i, struct Unit, CMP);
  1141. if (transparency)
  1142. AV_QSORT(sc->unit[3], i, struct Unit, CMP);
  1143. }
  1144. static int encode_float32_remap_segment(FFV1SliceContext *sc,
  1145. int p, int mul_count, int *mul_tab, int update, int final)
  1146. {
  1147. const int pixel_num = sc->slice_width * sc->slice_height;
  1148. uint8_t state[2][3][32];
  1149. int mul[4096+1];
  1150. RangeCoder rc = sc->c;
  1151. int lu = 0;
  1152. int run = 0;
  1153. int64_t last_val = -1;
  1154. int compact_index = -1;
  1155. int i = 0;
  1156. int current_mul_index = -1;
  1157. int run1final = 0;
  1158. int run1start_i;
  1159. int run1start_last_val;
  1160. int run1start_mul_index;
  1161. memcpy(mul, mul_tab, sizeof(*mul_tab)*(mul_count+1));
  1162. memset(state, 128, sizeof(state));
  1163. put_symbol(&rc, state[0][0], mul_count, 0);
  1164. memset(state, 128, sizeof(state));
  1165. for (; i < pixel_num+1; i++) {
  1166. int current_mul = current_mul_index < 0 ? 1 : FFABS(mul[current_mul_index]);
  1167. int64_t val;
  1168. if (i == pixel_num) {
  1169. if (last_val == 0xFFFFFFFF) {
  1170. break;
  1171. } else {
  1172. val = last_val + ((1LL<<32) - last_val + current_mul - 1) / current_mul * current_mul;
  1173. av_assert2(val >= (1LL<<32));
  1174. val += lu * current_mul; //ensure a run1 ends
  1175. }
  1176. } else
  1177. val = sc->unit[p][i].val;
  1178. if (last_val != val) {
  1179. int64_t delta = val - last_val;
  1180. int64_t step = FFMAX(1, (delta + current_mul/2) / current_mul);
  1181. av_assert2(last_val < val);
  1182. av_assert2(current_mul > 0);
  1183. delta -= step*current_mul;
  1184. av_assert2(delta <= current_mul/2);
  1185. av_assert2(delta > -current_mul);
  1186. av_assert2(step > 0);
  1187. if (lu) {
  1188. if (!run) {
  1189. run1start_i = i - 1;
  1190. run1start_last_val = last_val;
  1191. run1start_mul_index= current_mul_index;
  1192. }
  1193. if (step == 1) {
  1194. if (run1final) {
  1195. if (current_mul>1)
  1196. put_symbol_inline(&rc, state[lu][1], delta, 1, NULL, NULL);
  1197. }
  1198. run ++;
  1199. av_assert2(last_val + current_mul + delta == val);
  1200. } else {
  1201. if (run1final) {
  1202. if (run == 0)
  1203. lu ^= 1;
  1204. i--; // we did not encode val so we need to backstep
  1205. last_val += current_mul;
  1206. } else {
  1207. put_symbol_inline(&rc, state[lu][0], run, 0, NULL, NULL);
  1208. i = run1start_i;
  1209. last_val = run1start_last_val; // we could compute this instead of storing
  1210. current_mul_index = run1start_mul_index;
  1211. }
  1212. run1final ^= 1;
  1213. run = 0;
  1214. continue;
  1215. }
  1216. } else {
  1217. av_assert2(run == 0);
  1218. av_assert2(run1final == 0);
  1219. put_symbol_inline(&rc, state[lu][0], step - 1, 0, NULL, NULL);
  1220. if (current_mul > 1)
  1221. put_symbol_inline(&rc, state[lu][1], delta, 1, NULL, NULL);
  1222. if (step == 1)
  1223. lu ^= 1;
  1224. av_assert2(last_val + step * current_mul + delta == val);
  1225. }
  1226. last_val = val;
  1227. current_mul_index = ((last_val + 1) * mul_count) >> 32;
  1228. if (!run || run1final) {
  1229. av_assert2(mul[ current_mul_index ]);
  1230. if (mul[ current_mul_index ] < 0) {
  1231. av_assert2(i < pixel_num);
  1232. mul[ current_mul_index ] *= -1;
  1233. put_symbol_inline(&rc, state[0][2], mul[ current_mul_index ], 0, NULL, NULL);
  1234. }
  1235. if (i < pixel_num)
  1236. compact_index ++;
  1237. }
  1238. }
  1239. if (!run || run1final)
  1240. if (final && i < pixel_num)
  1241. sc->bitmap[p][sc->unit[p][i].ndx] = compact_index;
  1242. }
  1243. if (update) {
  1244. sc->c = rc;
  1245. sc->remap_count[p] = compact_index + 1;
  1246. }
  1247. return get_rac_count(&rc);
  1248. }
  1249. static void encode_float32_remap(FFV1Context *f, FFV1SliceContext *sc,
  1250. const uint8_t *src[4])
  1251. {
  1252. int pixel_num = sc->slice_width * sc->slice_height;
  1253. const int max_log2_mul_count = ((int[]){ 1, 1, 1, 9, 9, 10})[f->remap_optimizer];
  1254. const int log2_mul_count_step = ((int[]){ 1, 1, 1, 9, 9, 1})[f->remap_optimizer];
  1255. const int max_log2_mul = ((int[]){ 1, 8, 8, 9, 22, 22})[f->remap_optimizer];
  1256. const int log2_mul_step = ((int[]){ 1, 8, 1, 1, 1, 1})[f->remap_optimizer];
  1257. const int bruteforce_count = ((int[]){ 0, 0, 0, 1, 1, 1})[f->remap_optimizer];
  1258. const int stair_mode = ((int[]){ 0, 0, 0, 1, 0, 0})[f->remap_optimizer];
  1259. const int magic_log2 = ((int[]){ 1, 1, 1, 1, 0, 0})[f->remap_optimizer];
  1260. for (int p= 0; p < 1 + 2*f->chroma_planes + f->transparency; p++) {
  1261. int best_log2_mul_count = 0;
  1262. float score_sum[11] = {0};
  1263. int mul_all[11][1025];
  1264. for (int log2_mul_count= 0; log2_mul_count <= max_log2_mul_count; log2_mul_count += log2_mul_count_step) {
  1265. float score_tab_all[1025][23] = {0};
  1266. int64_t last_val = -1;
  1267. int *mul_tab = mul_all[log2_mul_count];
  1268. int last_mul_index = -1;
  1269. int mul_count = 1 << log2_mul_count;
  1270. score_sum[log2_mul_count] = 2 * log2_mul_count;
  1271. if (magic_log2)
  1272. score_sum[log2_mul_count] = av_float2int((float)mul_count * mul_count);
  1273. for (int i= 0; i<pixel_num; i++) {
  1274. int64_t val = sc->unit[p][i].val;
  1275. int mul_index = (val + 1LL)*mul_count >> 32;
  1276. if (val != last_val) {
  1277. float *score_tab = score_tab_all[(last_val + 1LL)*mul_count >> 32];
  1278. av_assert2(last_val < val);
  1279. for(int si= 0; si <= max_log2_mul; si += log2_mul_step) {
  1280. int64_t delta = val - last_val;
  1281. int mul;
  1282. int64_t cost;
  1283. if (last_val < 0) {
  1284. mul = 1;
  1285. } else if (stair_mode && mul_count == 512 && si == max_log2_mul ) {
  1286. if (mul_index >= 0x378/8 && mul_index <= 23 + 0x378/8) {
  1287. mul = (0x800080 >> (mul_index - 0x378/8));
  1288. } else
  1289. mul = 1;
  1290. } else {
  1291. mul = (0x10001LL)<<si >> 16;
  1292. }
  1293. cost = FFMAX((delta + mul/2) / mul, 1);
  1294. float score = 1;
  1295. if (mul > 1) {
  1296. score *= (FFABS(delta - cost*mul)+1);
  1297. if (mul_count > 1)
  1298. score *= score;
  1299. }
  1300. score *= cost;
  1301. score *= score;
  1302. if (mul_index != last_mul_index)
  1303. score *= mul;
  1304. if (magic_log2) {
  1305. score_tab[si] += av_float2int(score);
  1306. } else
  1307. score_tab[si] += log2f(score);
  1308. }
  1309. }
  1310. last_val = val;
  1311. last_mul_index = mul_index;
  1312. }
  1313. for(int i= 0; i<mul_count; i++) {
  1314. int best_index = 0;
  1315. float *score_tab = score_tab_all[i];
  1316. for(int si= 0; si <= max_log2_mul; si += log2_mul_step) {
  1317. if (score_tab[si] < score_tab[ best_index ])
  1318. best_index = si;
  1319. }
  1320. if (stair_mode && mul_count == 512 && best_index == max_log2_mul ) {
  1321. if (i >= 0x378/8 && i <= 23 + 0x378/8) {
  1322. mul_tab[i] = -(0x800080 >> (i - 0x378/8));
  1323. } else
  1324. mul_tab[i] = -1;
  1325. } else
  1326. mul_tab[i] = -((0x10001LL)<<best_index >> 16);
  1327. score_sum[log2_mul_count] += score_tab[ best_index ];
  1328. }
  1329. mul_tab[mul_count] = 1;
  1330. if (bruteforce_count)
  1331. score_sum[log2_mul_count] = encode_float32_remap_segment(sc, p, mul_count, mul_all[log2_mul_count], 0, 0);
  1332. if (score_sum[log2_mul_count] < score_sum[best_log2_mul_count])
  1333. best_log2_mul_count = log2_mul_count;
  1334. }
  1335. encode_float32_remap_segment(sc, p, 1<<best_log2_mul_count, mul_all[best_log2_mul_count], 1, 1);
  1336. }
  1337. }
  1338. static int encode_float32_rgb_frame(FFV1Context *f, FFV1SliceContext *sc,
  1339. const uint8_t *src[4],
  1340. int w, int h, const int stride[4], int ac)
  1341. {
  1342. int x, y, p, i;
  1343. const int ring_size = f->context_model ? 3 : 2;
  1344. int32_t *sample[4][3];
  1345. const int pass1 = !!(f->avctx->flags & AV_CODEC_FLAG_PASS1);
  1346. int bits[4], offset;
  1347. int transparency = f->transparency;
  1348. ff_ffv1_compute_bits_per_plane(f, sc, bits, &offset, NULL, f->bits_per_raw_sample);
  1349. sc->run_index = 0;
  1350. for (int p = 0; p < MAX_PLANES; ++p)
  1351. sample[p][2] = sc->sample_buffer32; // dummy to avoid UB pointer arithmetic
  1352. memset(RENAME(sc->sample_buffer), 0, ring_size * MAX_PLANES *
  1353. (w + 6) * sizeof(*RENAME(sc->sample_buffer)));
  1354. for (y = 0; y < h; y++) {
  1355. for (i = 0; i < ring_size; i++)
  1356. for (p = 0; p < MAX_PLANES; p++)
  1357. sample[p][i]= RENAME(sc->sample_buffer) + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  1358. for (x = 0; x < w; x++) {
  1359. int b, g, r, av_uninit(a);
  1360. g = sc->bitmap[0][x + w*y];
  1361. b = sc->bitmap[1][x + w*y];
  1362. r = sc->bitmap[2][x + w*y];
  1363. if (transparency)
  1364. a = sc->bitmap[3][x + w*y];
  1365. if (sc->slice_coding_mode != 1) {
  1366. b -= g;
  1367. r -= g;
  1368. g += (b * sc->slice_rct_by_coef + r * sc->slice_rct_ry_coef) >> 2;
  1369. b += offset;
  1370. r += offset;
  1371. }
  1372. sample[0][0][x] = g;
  1373. sample[1][0][x] = b;
  1374. sample[2][0][x] = r;
  1375. sample[3][0][x] = a;
  1376. }
  1377. for (p = 0; p < 3 + transparency; p++) {
  1378. int ret;
  1379. sample[p][0][-1] = sample[p][1][0 ];
  1380. sample[p][1][ w] = sample[p][1][w-1];
  1381. ret = encode_line32(f, sc, f->avctx, w, sample[p], (p + 1) / 2,
  1382. bits[p], ac, pass1);
  1383. if (ret < 0)
  1384. return ret;
  1385. }
  1386. }
  1387. return 0;
  1388. }
  1389. static int encode_slice(AVCodecContext *c, void *arg)
  1390. {
  1391. FFV1SliceContext *sc = arg;
  1392. FFV1Context *f = c->priv_data;
  1393. int width = sc->slice_width;
  1394. int height = sc->slice_height;
  1395. int x = sc->slice_x;
  1396. int y = sc->slice_y;
  1397. const AVFrame *const p = f->cur_enc_frame;
  1398. const int ps = av_pix_fmt_desc_get(c->pix_fmt)->comp[0].step;
  1399. int ret;
  1400. RangeCoder c_bak = sc->c;
  1401. const int chroma_width = AV_CEIL_RSHIFT(width, f->chroma_h_shift);
  1402. const int chroma_height = AV_CEIL_RSHIFT(height, f->chroma_v_shift);
  1403. const uint8_t *planes[4] = {p->data[0] + ps*x + y*p->linesize[0],
  1404. p->data[1] ? p->data[1] + ps*x + y*p->linesize[1] : NULL,
  1405. p->data[2] ? p->data[2] + ps*x + y*p->linesize[2] : NULL,
  1406. p->data[3] ? p->data[3] + ps*x + y*p->linesize[3] : NULL};
  1407. int ac = f->ac;
  1408. sc->slice_coding_mode = 0;
  1409. if (f->version > 3 && f->colorspace == 1) {
  1410. choose_rct_params(f, sc, planes, p->linesize, width, height);
  1411. } else {
  1412. sc->slice_rct_by_coef = 1;
  1413. sc->slice_rct_ry_coef = 1;
  1414. }
  1415. retry:
  1416. if (f->key_frame)
  1417. ff_ffv1_clear_slice_state(f, sc);
  1418. if (f->version > 2) {
  1419. encode_slice_header(f, sc);
  1420. }
  1421. if (sc->remap) {
  1422. //Both the 16bit and 32bit remap do exactly the same thing but with 16bits we can
  1423. //Implement this using a "histogram" while for 32bit that would be gb sized, thus a more
  1424. //complex implementation sorting pairs is used.
  1425. if (f->bits_per_raw_sample != 32) {
  1426. if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
  1427. const int cx = x >> f->chroma_h_shift;
  1428. const int cy = y >> f->chroma_v_shift;
  1429. //TODO decide on the order for the encoded remaps and loads. with golomb rice it
  1430. // easier to have all range coded ones together, otherwise it may be nicer to handle each plane as a whole?
  1431. load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 1);
  1432. if (f->chroma_planes) {
  1433. load_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1);
  1434. load_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 2, 1);
  1435. }
  1436. if (f->transparency)
  1437. load_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 3, 1);
  1438. } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
  1439. load_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 2);
  1440. load_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 2);
  1441. } else if (f->use32bit) {
  1442. load_rgb_frame32(f, sc, planes, width, height, p->linesize);
  1443. } else
  1444. load_rgb_frame (f, sc, planes, width, height, p->linesize);
  1445. encode_histogram_remap(f, sc);
  1446. } else {
  1447. load_rgb_float32_frame(f, sc, planes, width, height, p->linesize);
  1448. encode_float32_remap(f, sc, planes);
  1449. }
  1450. }
  1451. if (ac == AC_GOLOMB_RICE) {
  1452. sc->ac_byte_count = f->version > 2 || (!x && !y) ? ff_rac_terminate(&sc->c, f->version > 2) : 0;
  1453. init_put_bits(&sc->pb,
  1454. sc->c.bytestream_start + sc->ac_byte_count,
  1455. sc->c.bytestream_end - sc->c.bytestream_start - sc->ac_byte_count);
  1456. }
  1457. if (f->colorspace == 0 && c->pix_fmt != AV_PIX_FMT_YA8 && c->pix_fmt != AV_PIX_FMT_YAF16) {
  1458. const int cx = x >> f->chroma_h_shift;
  1459. const int cy = y >> f->chroma_v_shift;
  1460. ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 1, ac);
  1461. if (f->chroma_planes) {
  1462. ret |= encode_plane(f, sc, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1, 1, 1, ac);
  1463. ret |= encode_plane(f, sc, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1, 2, 1, ac);
  1464. }
  1465. if (f->transparency)
  1466. ret |= encode_plane(f, sc, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2, 3, 1, ac);
  1467. } else if (c->pix_fmt == AV_PIX_FMT_YA8 || c->pix_fmt == AV_PIX_FMT_YAF16) {
  1468. ret = encode_plane(f, sc, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0, 0, 2, ac);
  1469. ret |= encode_plane(f, sc, p->data[0] + (ps>>1) + ps*x + y*p->linesize[0], width, height, p->linesize[0], 1, 1, 2, ac);
  1470. } else if (f->bits_per_raw_sample == 32) {
  1471. ret = encode_float32_rgb_frame(f, sc, planes, width, height, p->linesize, ac);
  1472. } else if (f->use32bit) {
  1473. ret = encode_rgb_frame32(f, sc, planes, width, height, p->linesize, ac);
  1474. } else {
  1475. ret = encode_rgb_frame(f, sc, planes, width, height, p->linesize, ac);
  1476. }
  1477. if (ac != AC_GOLOMB_RICE) {
  1478. sc->ac_byte_count = ff_rac_terminate(&sc->c, 1);
  1479. } else {
  1480. flush_put_bits(&sc->pb); // FIXME: nicer padding
  1481. sc->ac_byte_count += put_bytes_output(&sc->pb);
  1482. }
  1483. if (ret < 0) {
  1484. av_assert0(sc->slice_coding_mode == 0);
  1485. if (f->version < 4) {
  1486. av_log(c, AV_LOG_ERROR, "Buffer too small\n");
  1487. return ret;
  1488. }
  1489. av_log(c, AV_LOG_DEBUG, "Coding slice as PCM\n");
  1490. ac = 1;
  1491. sc->slice_coding_mode = 1;
  1492. sc->c = c_bak;
  1493. goto retry;
  1494. }
  1495. return 0;
  1496. }
  1497. size_t ff_ffv1_encode_buffer_size(AVCodecContext *avctx)
  1498. {
  1499. FFV1Context *f = avctx->priv_data;
  1500. size_t maxsize = avctx->width*avctx->height * (1 + f->transparency);
  1501. if (f->chroma_planes)
  1502. maxsize += AV_CEIL_RSHIFT(avctx->width, f->chroma_h_shift) * AV_CEIL_RSHIFT(f->height, f->chroma_v_shift) * 2;
  1503. maxsize += f->slice_count * 800; //for slice header
  1504. if (f->version > 3) {
  1505. maxsize *= f->bits_per_raw_sample + 1;
  1506. if (f->remap_mode)
  1507. maxsize += f->slice_count * 70000 * (1 + 2*f->chroma_planes + f->transparency);
  1508. } else {
  1509. maxsize += f->slice_count * 2 * (avctx->width + avctx->height); //for bug with slices that code some pixels more than once
  1510. maxsize *= 8*(2*f->bits_per_raw_sample + 5);
  1511. }
  1512. maxsize >>= 3;
  1513. maxsize += FF_INPUT_BUFFER_MIN_SIZE;
  1514. return maxsize;
  1515. }
  1516. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1517. const AVFrame *pict, int *got_packet)
  1518. {
  1519. FFV1Context *f = avctx->priv_data;
  1520. RangeCoder *const c = &f->slices[0].c;
  1521. uint8_t keystate = 128;
  1522. uint8_t *buf_p;
  1523. int i, ret;
  1524. int64_t maxsize;
  1525. if(!pict) {
  1526. if (avctx->flags & AV_CODEC_FLAG_PASS1) {
  1527. int j, k, m;
  1528. char *p = avctx->stats_out;
  1529. char *end = p + STATS_OUT_SIZE;
  1530. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1531. for (i = 0; i < f->quant_table_count; i++)
  1532. memset(f->rc_stat2[i], 0, f->context_count[i] * sizeof(*f->rc_stat2[i]));
  1533. av_assert0(f->slice_count == f->max_slice_count);
  1534. for (j = 0; j < f->slice_count; j++) {
  1535. const FFV1SliceContext *sc = &f->slices[j];
  1536. for (i = 0; i < 256; i++) {
  1537. f->rc_stat[i][0] += sc->rc_stat[i][0];
  1538. f->rc_stat[i][1] += sc->rc_stat[i][1];
  1539. }
  1540. for (i = 0; i < f->quant_table_count; i++) {
  1541. for (k = 0; k < f->context_count[i]; k++)
  1542. for (m = 0; m < 32; m++) {
  1543. f->rc_stat2[i][k][m][0] += sc->rc_stat2[i][k][m][0];
  1544. f->rc_stat2[i][k][m][1] += sc->rc_stat2[i][k][m][1];
  1545. }
  1546. }
  1547. }
  1548. for (j = 0; j < 256; j++) {
  1549. snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
  1550. f->rc_stat[j][0], f->rc_stat[j][1]);
  1551. p += strlen(p);
  1552. }
  1553. snprintf(p, end - p, "\n");
  1554. for (i = 0; i < f->quant_table_count; i++) {
  1555. for (j = 0; j < f->context_count[i]; j++)
  1556. for (m = 0; m < 32; m++) {
  1557. snprintf(p, end - p, "%" PRIu64 " %" PRIu64 " ",
  1558. f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1559. p += strlen(p);
  1560. }
  1561. }
  1562. snprintf(p, end - p, "%d\n", f->gob_count);
  1563. }
  1564. return 0;
  1565. }
  1566. /* Maximum packet size */
  1567. maxsize = ff_ffv1_encode_buffer_size(avctx);
  1568. if (maxsize > INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32) {
  1569. FFV1Context *f = avctx->priv_data;
  1570. if (!f->maxsize_warned) {
  1571. av_log(avctx, AV_LOG_WARNING, "Cannot allocate worst case packet size, the encoding could fail\n");
  1572. f->maxsize_warned++;
  1573. }
  1574. maxsize = INT_MAX - AV_INPUT_BUFFER_PADDING_SIZE - 32;
  1575. }
  1576. if ((ret = ff_alloc_packet(avctx, pkt, maxsize)) < 0)
  1577. return ret;
  1578. ff_init_range_encoder(c, pkt->data, pkt->size);
  1579. ff_build_rac_states(c, 0.05 * (1LL << 32), 256 - 8);
  1580. f->cur_enc_frame = pict;
  1581. if (avctx->gop_size == 0 || f->picture_number % avctx->gop_size == 0) {
  1582. put_rac(c, &keystate, 1);
  1583. f->key_frame = 1;
  1584. f->gob_count++;
  1585. write_header(f);
  1586. } else {
  1587. put_rac(c, &keystate, 0);
  1588. f->key_frame = 0;
  1589. }
  1590. if (f->ac == AC_RANGE_CUSTOM_TAB) {
  1591. int i;
  1592. for (i = 1; i < 256; i++) {
  1593. c->one_state[i] = f->state_transition[i];
  1594. c->zero_state[256 - i] = 256 - c->one_state[i];
  1595. }
  1596. }
  1597. for (i = 0; i < f->slice_count; i++) {
  1598. FFV1SliceContext *sc = &f->slices[i];
  1599. uint8_t *start = pkt->data + pkt->size * (int64_t)i / f->slice_count;
  1600. int len = pkt->size / f->slice_count;
  1601. if (i) {
  1602. ff_init_range_encoder(&sc->c, start, len);
  1603. } else {
  1604. av_assert0(sc->c.bytestream_end >= sc->c.bytestream_start + len);
  1605. av_assert0(sc->c.bytestream < sc->c.bytestream_start + len);
  1606. sc->c.bytestream_end = sc->c.bytestream_start + len;
  1607. }
  1608. }
  1609. avctx->execute(avctx, encode_slice, f->slices, NULL,
  1610. f->slice_count, sizeof(*f->slices));
  1611. buf_p = pkt->data;
  1612. for (i = 0; i < f->slice_count; i++) {
  1613. FFV1SliceContext *sc = &f->slices[i];
  1614. int bytes = sc->ac_byte_count;
  1615. if (i > 0 || f->version > 2) {
  1616. av_assert0(bytes < pkt->size / f->slice_count);
  1617. memmove(buf_p, sc->c.bytestream_start, bytes);
  1618. av_assert0(bytes < (1 << 24));
  1619. AV_WB24(buf_p + bytes, bytes);
  1620. bytes += 3;
  1621. }
  1622. if (f->ec) {
  1623. unsigned v;
  1624. buf_p[bytes++] = 0;
  1625. v = av_crc(av_crc_get_table(AV_CRC_32_IEEE), f->crcref, buf_p, bytes) ^ (f->crcref ? 0x8CD88196 : 0);
  1626. AV_WL32(buf_p + bytes, v);
  1627. bytes += 4;
  1628. }
  1629. buf_p += bytes;
  1630. }
  1631. if (avctx->flags & AV_CODEC_FLAG_PASS1)
  1632. avctx->stats_out[0] = '\0';
  1633. f->picture_number++;
  1634. pkt->size = buf_p - pkt->data;
  1635. pkt->flags |= AV_PKT_FLAG_KEY * f->key_frame;
  1636. *got_packet = 1;
  1637. return 0;
  1638. }
  1639. static av_cold int encode_close(AVCodecContext *avctx)
  1640. {
  1641. FFV1Context *const s = avctx->priv_data;
  1642. for (int j = 0; j < s->max_slice_count; j++) {
  1643. FFV1SliceContext *sc = &s->slices[j];
  1644. for(int p = 0; p<4; p++) {
  1645. av_freep(&sc->unit[p]);
  1646. av_freep(&sc->bitmap[p]);
  1647. }
  1648. }
  1649. av_freep(&avctx->stats_out);
  1650. ff_ffv1_close(s);
  1651. return 0;
  1652. }
  1653. #define OFFSET(x) offsetof(FFV1Context, x)
  1654. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  1655. static const AVOption options[] = {
  1656. { "slicecrc", "Protect slices with CRCs", OFFSET(ec), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE },
  1657. { "coder", "Coder type", OFFSET(ac), AV_OPT_TYPE_INT,
  1658. { .i64 = 0 }, -2, 2, VE, .unit = "coder" },
  1659. { "rice", "Golomb rice", 0, AV_OPT_TYPE_CONST,
  1660. { .i64 = AC_GOLOMB_RICE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
  1661. { "range_def", "Range with default table", 0, AV_OPT_TYPE_CONST,
  1662. { .i64 = AC_RANGE_DEFAULT_TAB_FORCE }, INT_MIN, INT_MAX, VE, .unit = "coder" },
  1663. { "range_tab", "Range with custom table", 0, AV_OPT_TYPE_CONST,
  1664. { .i64 = AC_RANGE_CUSTOM_TAB }, INT_MIN, INT_MAX, VE, .unit = "coder" },
  1665. { "ac", "Range with custom table (the ac option exists for compatibility and is deprecated)", 0, AV_OPT_TYPE_CONST,
  1666. { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "coder" },
  1667. { "context", "Context model", OFFSET(context_model), AV_OPT_TYPE_INT,
  1668. { .i64 = 0 }, 0, 1, VE },
  1669. { "qtable", "Quantization table", OFFSET(qtable), AV_OPT_TYPE_INT,
  1670. { .i64 = -1 }, -1, 2, VE , .unit = "qtable"},
  1671. { "default", NULL, 0, AV_OPT_TYPE_CONST,
  1672. { .i64 = QTABLE_DEFAULT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
  1673. { "8bit", NULL, 0, AV_OPT_TYPE_CONST,
  1674. { .i64 = QTABLE_8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
  1675. { "greater8bit", NULL, 0, AV_OPT_TYPE_CONST,
  1676. { .i64 = QTABLE_GT8BIT }, INT_MIN, INT_MAX, VE, .unit = "qtable" },
  1677. { "remap_mode", "Remap Mode", OFFSET(remap_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, 2, VE, .unit = "remap_mode" },
  1678. { "auto", "Automatic", 0, AV_OPT_TYPE_CONST,
  1679. { .i64 = -1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
  1680. { "off", "Disabled", 0, AV_OPT_TYPE_CONST,
  1681. { .i64 = 0 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
  1682. { "dualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
  1683. { .i64 = 1 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
  1684. { "flipdualrle", "Dual RLE", 0, AV_OPT_TYPE_CONST,
  1685. { .i64 = 2 }, INT_MIN, INT_MAX, VE, .unit = "remap_mode" },
  1686. { "remap_optimizer", "Remap Optimizer", OFFSET(remap_optimizer), AV_OPT_TYPE_INT, { .i64 = 3 }, 0, 5, VE, .unit = "remap_optimizer" },
  1687. { NULL }
  1688. };
  1689. static const AVClass ffv1_class = {
  1690. .class_name = "ffv1 encoder",
  1691. .item_name = av_default_item_name,
  1692. .option = options,
  1693. .version = LIBAVUTIL_VERSION_INT,
  1694. };
  1695. const FFCodec ff_ffv1_encoder = {
  1696. .p.name = "ffv1",
  1697. CODEC_LONG_NAME("FFmpeg video codec #1"),
  1698. .p.type = AVMEDIA_TYPE_VIDEO,
  1699. .p.id = AV_CODEC_ID_FFV1,
  1700. .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  1701. AV_CODEC_CAP_SLICE_THREADS |
  1702. AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
  1703. .priv_data_size = sizeof(FFV1Context),
  1704. .init = encode_init_internal,
  1705. FF_CODEC_ENCODE_CB(encode_frame),
  1706. .close = encode_close,
  1707. CODEC_PIXFMTS(
  1708. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV444P,
  1709. AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV411P,
  1710. AV_PIX_FMT_YUV410P, AV_PIX_FMT_0RGB32, AV_PIX_FMT_RGB32, AV_PIX_FMT_YUV420P16,
  1711. AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV422P9,
  1712. AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10,
  1713. AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12,
  1714. AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA420P16,
  1715. AV_PIX_FMT_YUVA444P12, AV_PIX_FMT_YUVA422P12,
  1716. AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA420P10,
  1717. AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA420P9,
  1718. AV_PIX_FMT_GRAY16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
  1719. AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRAP14,
  1720. AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12,
  1721. AV_PIX_FMT_YA8,
  1722. AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14,
  1723. AV_PIX_FMT_GBRP16, AV_PIX_FMT_RGB48,
  1724. AV_PIX_FMT_GBRAP16, AV_PIX_FMT_RGBA64,
  1725. AV_PIX_FMT_GRAY9,
  1726. AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14,
  1727. AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV440P12,
  1728. AV_PIX_FMT_YAF16,
  1729. AV_PIX_FMT_GRAYF16,
  1730. AV_PIX_FMT_GBRPF16, AV_PIX_FMT_GBRPF32),
  1731. .color_ranges = AVCOL_RANGE_MPEG,
  1732. .p.priv_class = &ffv1_class,
  1733. .caps_internal = FF_CODEC_CAP_INIT_CLEANUP | FF_CODEC_CAP_EOF_FLUSH,
  1734. };