ffmpeg_sched.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770
  1. /*
  2. * Inter-thread scheduling/synchronization.
  3. * Copyright (c) 2023 Anton Khirnov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdatomic.h>
  22. #include <stddef.h>
  23. #include <stdint.h>
  24. #include "cmdutils.h"
  25. #include "ffmpeg_sched.h"
  26. #include "ffmpeg_utils.h"
  27. #include "sync_queue.h"
  28. #include "thread_queue.h"
  29. #include "libavcodec/packet.h"
  30. #include "libavutil/avassert.h"
  31. #include "libavutil/error.h"
  32. #include "libavutil/fifo.h"
  33. #include "libavutil/frame.h"
  34. #include "libavutil/mem.h"
  35. #include "libavutil/thread.h"
  36. #include "libavutil/threadmessage.h"
  37. #include "libavutil/time.h"
  38. // 100 ms
  39. // FIXME: some other value? make this dynamic?
  40. #define SCHEDULE_TOLERANCE (100 * 1000)
  41. enum QueueType {
  42. QUEUE_PACKETS,
  43. QUEUE_FRAMES,
  44. };
  45. typedef struct SchWaiter {
  46. pthread_mutex_t lock;
  47. pthread_cond_t cond;
  48. atomic_int choked;
  49. // the following are internal state of schedule_update_locked() and must not
  50. // be accessed outside of it
  51. int choked_prev;
  52. int choked_next;
  53. } SchWaiter;
  54. typedef struct SchTask {
  55. Scheduler *parent;
  56. SchedulerNode node;
  57. SchThreadFunc func;
  58. void *func_arg;
  59. pthread_t thread;
  60. int thread_running;
  61. } SchTask;
  62. typedef struct SchDecOutput {
  63. SchedulerNode *dst;
  64. uint8_t *dst_finished;
  65. unsigned nb_dst;
  66. } SchDecOutput;
  67. typedef struct SchDec {
  68. const AVClass *class;
  69. SchedulerNode src;
  70. SchDecOutput *outputs;
  71. unsigned nb_outputs;
  72. SchTask task;
  73. // Queue for receiving input packets, one stream.
  74. ThreadQueue *queue;
  75. // Queue for sending post-flush end timestamps back to the source
  76. AVThreadMessageQueue *queue_end_ts;
  77. int expect_end_ts;
  78. // temporary storage used by sch_dec_send()
  79. AVFrame *send_frame;
  80. } SchDec;
  81. typedef struct SchSyncQueue {
  82. SyncQueue *sq;
  83. AVFrame *frame;
  84. pthread_mutex_t lock;
  85. unsigned *enc_idx;
  86. unsigned nb_enc_idx;
  87. } SchSyncQueue;
  88. typedef struct SchEnc {
  89. const AVClass *class;
  90. SchedulerNode src;
  91. SchedulerNode *dst;
  92. uint8_t *dst_finished;
  93. unsigned nb_dst;
  94. // [0] - index of the sync queue in Scheduler.sq_enc,
  95. // [1] - index of this encoder in the sq
  96. int sq_idx[2];
  97. /* Opening encoders is somewhat nontrivial due to their interaction with
  98. * sync queues, which are (among other things) responsible for maintaining
  99. * constant audio frame size, when it is required by the encoder.
  100. *
  101. * Opening the encoder requires stream parameters, obtained from the first
  102. * frame. However, that frame cannot be properly chunked by the sync queue
  103. * without knowing the required frame size, which is only available after
  104. * opening the encoder.
  105. *
  106. * This apparent circular dependency is resolved in the following way:
  107. * - the caller creating the encoder gives us a callback which opens the
  108. * encoder and returns the required frame size (if any)
  109. * - when the first frame is sent to the encoder, the sending thread
  110. * - calls this callback, opening the encoder
  111. * - passes the returned frame size to the sync queue
  112. */
  113. int (*open_cb)(void *opaque, const AVFrame *frame);
  114. int opened;
  115. SchTask task;
  116. // Queue for receiving input frames, one stream.
  117. ThreadQueue *queue;
  118. // tq_send() to queue returned EOF
  119. int in_finished;
  120. // temporary storage used by sch_enc_send()
  121. AVPacket *send_pkt;
  122. } SchEnc;
  123. typedef struct SchDemuxStream {
  124. SchedulerNode *dst;
  125. uint8_t *dst_finished;
  126. unsigned nb_dst;
  127. } SchDemuxStream;
  128. typedef struct SchDemux {
  129. const AVClass *class;
  130. SchDemuxStream *streams;
  131. unsigned nb_streams;
  132. SchTask task;
  133. SchWaiter waiter;
  134. // temporary storage used by sch_demux_send()
  135. AVPacket *send_pkt;
  136. // protected by schedule_lock
  137. int task_exited;
  138. } SchDemux;
  139. typedef struct PreMuxQueue {
  140. /**
  141. * Queue for buffering the packets before the muxer task can be started.
  142. */
  143. AVFifo *fifo;
  144. /**
  145. * Maximum number of packets in fifo.
  146. */
  147. int max_packets;
  148. /*
  149. * The size of the AVPackets' buffers in queue.
  150. * Updated when a packet is either pushed or pulled from the queue.
  151. */
  152. size_t data_size;
  153. /* Threshold after which max_packets will be in effect */
  154. size_t data_threshold;
  155. } PreMuxQueue;
  156. typedef struct SchMuxStream {
  157. SchedulerNode src;
  158. unsigned *sub_heartbeat_dst;
  159. unsigned nb_sub_heartbeat_dst;
  160. PreMuxQueue pre_mux_queue;
  161. // an EOF was generated while flushing the pre-mux queue
  162. int init_eof;
  163. ////////////////////////////////////////////////////////////
  164. // The following are protected by Scheduler.schedule_lock //
  165. /* dts+duration of the last packet sent to this stream
  166. in AV_TIME_BASE_Q */
  167. int64_t last_dts;
  168. // this stream no longer accepts input
  169. int source_finished;
  170. ////////////////////////////////////////////////////////////
  171. } SchMuxStream;
  172. typedef struct SchMux {
  173. const AVClass *class;
  174. SchMuxStream *streams;
  175. unsigned nb_streams;
  176. unsigned nb_streams_ready;
  177. int (*init)(void *arg);
  178. SchTask task;
  179. /**
  180. * Set to 1 after starting the muxer task and flushing the
  181. * pre-muxing queues.
  182. * Set either before any tasks have started, or with
  183. * Scheduler.mux_ready_lock held.
  184. */
  185. atomic_int mux_started;
  186. ThreadQueue *queue;
  187. unsigned queue_size;
  188. AVPacket *sub_heartbeat_pkt;
  189. } SchMux;
  190. typedef struct SchFilterIn {
  191. SchedulerNode src;
  192. int send_finished;
  193. int receive_finished;
  194. } SchFilterIn;
  195. typedef struct SchFilterOut {
  196. SchedulerNode dst;
  197. } SchFilterOut;
  198. typedef struct SchFilterGraph {
  199. const AVClass *class;
  200. SchFilterIn *inputs;
  201. unsigned nb_inputs;
  202. atomic_uint nb_inputs_finished_send;
  203. unsigned nb_inputs_finished_receive;
  204. SchFilterOut *outputs;
  205. unsigned nb_outputs;
  206. SchTask task;
  207. // input queue, nb_inputs+1 streams
  208. // last stream is control
  209. ThreadQueue *queue;
  210. SchWaiter waiter;
  211. // protected by schedule_lock
  212. unsigned best_input;
  213. int task_exited;
  214. } SchFilterGraph;
  215. enum SchedulerState {
  216. SCH_STATE_UNINIT,
  217. SCH_STATE_STARTED,
  218. SCH_STATE_STOPPED,
  219. };
  220. struct Scheduler {
  221. const AVClass *class;
  222. SchDemux *demux;
  223. unsigned nb_demux;
  224. SchMux *mux;
  225. unsigned nb_mux;
  226. unsigned nb_mux_ready;
  227. pthread_mutex_t mux_ready_lock;
  228. unsigned nb_mux_done;
  229. unsigned task_failed;
  230. pthread_mutex_t finish_lock;
  231. pthread_cond_t finish_cond;
  232. SchDec *dec;
  233. unsigned nb_dec;
  234. SchEnc *enc;
  235. unsigned nb_enc;
  236. SchSyncQueue *sq_enc;
  237. unsigned nb_sq_enc;
  238. SchFilterGraph *filters;
  239. unsigned nb_filters;
  240. char *sdp_filename;
  241. int sdp_auto;
  242. enum SchedulerState state;
  243. atomic_int terminate;
  244. pthread_mutex_t schedule_lock;
  245. atomic_int_least64_t last_dts;
  246. };
  247. /**
  248. * Wait until this task is allowed to proceed.
  249. *
  250. * @retval 0 the caller should proceed
  251. * @retval 1 the caller should terminate
  252. */
  253. static int waiter_wait(Scheduler *sch, SchWaiter *w)
  254. {
  255. int terminate;
  256. if (!atomic_load(&w->choked))
  257. return 0;
  258. pthread_mutex_lock(&w->lock);
  259. while (atomic_load(&w->choked) && !atomic_load(&sch->terminate))
  260. pthread_cond_wait(&w->cond, &w->lock);
  261. terminate = atomic_load(&sch->terminate);
  262. pthread_mutex_unlock(&w->lock);
  263. return terminate;
  264. }
  265. static void waiter_set(SchWaiter *w, int choked)
  266. {
  267. pthread_mutex_lock(&w->lock);
  268. atomic_store(&w->choked, choked);
  269. pthread_cond_signal(&w->cond);
  270. pthread_mutex_unlock(&w->lock);
  271. }
  272. static int waiter_init(SchWaiter *w)
  273. {
  274. int ret;
  275. atomic_init(&w->choked, 0);
  276. ret = pthread_mutex_init(&w->lock, NULL);
  277. if (ret)
  278. return AVERROR(ret);
  279. ret = pthread_cond_init(&w->cond, NULL);
  280. if (ret)
  281. return AVERROR(ret);
  282. return 0;
  283. }
  284. static void waiter_uninit(SchWaiter *w)
  285. {
  286. pthread_mutex_destroy(&w->lock);
  287. pthread_cond_destroy(&w->cond);
  288. }
  289. static int queue_alloc(ThreadQueue **ptq, unsigned nb_streams, unsigned queue_size,
  290. enum QueueType type)
  291. {
  292. ThreadQueue *tq;
  293. if (queue_size <= 0) {
  294. if (type == QUEUE_FRAMES)
  295. queue_size = DEFAULT_FRAME_THREAD_QUEUE_SIZE;
  296. else
  297. queue_size = DEFAULT_PACKET_THREAD_QUEUE_SIZE;
  298. }
  299. if (type == QUEUE_FRAMES) {
  300. // This queue length is used in the decoder code to ensure that
  301. // there are enough entries in fixed-size frame pools to account
  302. // for frames held in queues inside the ffmpeg utility. If this
  303. // can ever dynamically change then the corresponding decode
  304. // code needs to be updated as well.
  305. av_assert0(queue_size <= DEFAULT_FRAME_THREAD_QUEUE_SIZE);
  306. }
  307. tq = tq_alloc(nb_streams, queue_size,
  308. (type == QUEUE_PACKETS) ? THREAD_QUEUE_PACKETS : THREAD_QUEUE_FRAMES);
  309. if (!tq)
  310. return AVERROR(ENOMEM);
  311. *ptq = tq;
  312. return 0;
  313. }
  314. static void *task_wrapper(void *arg);
  315. static int task_start(SchTask *task)
  316. {
  317. int ret;
  318. if (!task->parent)
  319. return 0;
  320. av_log(task->func_arg, AV_LOG_VERBOSE, "Starting thread...\n");
  321. av_assert0(!task->thread_running);
  322. ret = pthread_create(&task->thread, NULL, task_wrapper, task);
  323. if (ret) {
  324. av_log(task->func_arg, AV_LOG_ERROR, "pthread_create() failed: %s\n",
  325. strerror(ret));
  326. return AVERROR(ret);
  327. }
  328. task->thread_running = 1;
  329. return 0;
  330. }
  331. static void task_init(Scheduler *sch, SchTask *task, enum SchedulerNodeType type, unsigned idx,
  332. SchThreadFunc func, void *func_arg)
  333. {
  334. task->parent = sch;
  335. task->node.type = type;
  336. task->node.idx = idx;
  337. task->func = func;
  338. task->func_arg = func_arg;
  339. }
  340. static int64_t trailing_dts(const Scheduler *sch, int count_finished)
  341. {
  342. int64_t min_dts = INT64_MAX;
  343. for (unsigned i = 0; i < sch->nb_mux; i++) {
  344. const SchMux *mux = &sch->mux[i];
  345. for (unsigned j = 0; j < mux->nb_streams; j++) {
  346. const SchMuxStream *ms = &mux->streams[j];
  347. if (ms->source_finished && !count_finished)
  348. continue;
  349. if (ms->last_dts == AV_NOPTS_VALUE)
  350. return AV_NOPTS_VALUE;
  351. min_dts = FFMIN(min_dts, ms->last_dts);
  352. }
  353. }
  354. return min_dts == INT64_MAX ? AV_NOPTS_VALUE : min_dts;
  355. }
  356. void sch_remove_filtergraph(Scheduler *sch, int idx)
  357. {
  358. SchFilterGraph *fg = &sch->filters[idx];
  359. av_assert0(!fg->task.thread_running);
  360. memset(&fg->task, 0, sizeof(fg->task));
  361. tq_free(&fg->queue);
  362. av_freep(&fg->inputs);
  363. fg->nb_inputs = 0;
  364. av_freep(&fg->outputs);
  365. fg->nb_outputs = 0;
  366. fg->task_exited = 1;
  367. }
  368. void sch_free(Scheduler **psch)
  369. {
  370. Scheduler *sch = *psch;
  371. if (!sch)
  372. return;
  373. sch_stop(sch, NULL);
  374. for (unsigned i = 0; i < sch->nb_demux; i++) {
  375. SchDemux *d = &sch->demux[i];
  376. for (unsigned j = 0; j < d->nb_streams; j++) {
  377. SchDemuxStream *ds = &d->streams[j];
  378. av_freep(&ds->dst);
  379. av_freep(&ds->dst_finished);
  380. }
  381. av_freep(&d->streams);
  382. av_packet_free(&d->send_pkt);
  383. waiter_uninit(&d->waiter);
  384. }
  385. av_freep(&sch->demux);
  386. for (unsigned i = 0; i < sch->nb_mux; i++) {
  387. SchMux *mux = &sch->mux[i];
  388. for (unsigned j = 0; j < mux->nb_streams; j++) {
  389. SchMuxStream *ms = &mux->streams[j];
  390. if (ms->pre_mux_queue.fifo) {
  391. AVPacket *pkt;
  392. while (av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1) >= 0)
  393. av_packet_free(&pkt);
  394. av_fifo_freep2(&ms->pre_mux_queue.fifo);
  395. }
  396. av_freep(&ms->sub_heartbeat_dst);
  397. }
  398. av_freep(&mux->streams);
  399. av_packet_free(&mux->sub_heartbeat_pkt);
  400. tq_free(&mux->queue);
  401. }
  402. av_freep(&sch->mux);
  403. for (unsigned i = 0; i < sch->nb_dec; i++) {
  404. SchDec *dec = &sch->dec[i];
  405. tq_free(&dec->queue);
  406. av_thread_message_queue_free(&dec->queue_end_ts);
  407. for (unsigned j = 0; j < dec->nb_outputs; j++) {
  408. SchDecOutput *o = &dec->outputs[j];
  409. av_freep(&o->dst);
  410. av_freep(&o->dst_finished);
  411. }
  412. av_freep(&dec->outputs);
  413. av_frame_free(&dec->send_frame);
  414. }
  415. av_freep(&sch->dec);
  416. for (unsigned i = 0; i < sch->nb_enc; i++) {
  417. SchEnc *enc = &sch->enc[i];
  418. tq_free(&enc->queue);
  419. av_packet_free(&enc->send_pkt);
  420. av_freep(&enc->dst);
  421. av_freep(&enc->dst_finished);
  422. }
  423. av_freep(&sch->enc);
  424. for (unsigned i = 0; i < sch->nb_sq_enc; i++) {
  425. SchSyncQueue *sq = &sch->sq_enc[i];
  426. sq_free(&sq->sq);
  427. av_frame_free(&sq->frame);
  428. pthread_mutex_destroy(&sq->lock);
  429. av_freep(&sq->enc_idx);
  430. }
  431. av_freep(&sch->sq_enc);
  432. for (unsigned i = 0; i < sch->nb_filters; i++) {
  433. SchFilterGraph *fg = &sch->filters[i];
  434. tq_free(&fg->queue);
  435. av_freep(&fg->inputs);
  436. av_freep(&fg->outputs);
  437. waiter_uninit(&fg->waiter);
  438. }
  439. av_freep(&sch->filters);
  440. av_freep(&sch->sdp_filename);
  441. pthread_mutex_destroy(&sch->schedule_lock);
  442. pthread_mutex_destroy(&sch->mux_ready_lock);
  443. pthread_mutex_destroy(&sch->finish_lock);
  444. pthread_cond_destroy(&sch->finish_cond);
  445. av_freep(psch);
  446. }
  447. static const AVClass scheduler_class = {
  448. .class_name = "Scheduler",
  449. .version = LIBAVUTIL_VERSION_INT,
  450. };
  451. Scheduler *sch_alloc(void)
  452. {
  453. Scheduler *sch;
  454. int ret;
  455. sch = av_mallocz(sizeof(*sch));
  456. if (!sch)
  457. return NULL;
  458. sch->class = &scheduler_class;
  459. sch->sdp_auto = 1;
  460. ret = pthread_mutex_init(&sch->schedule_lock, NULL);
  461. if (ret)
  462. goto fail;
  463. ret = pthread_mutex_init(&sch->mux_ready_lock, NULL);
  464. if (ret)
  465. goto fail;
  466. ret = pthread_mutex_init(&sch->finish_lock, NULL);
  467. if (ret)
  468. goto fail;
  469. ret = pthread_cond_init(&sch->finish_cond, NULL);
  470. if (ret)
  471. goto fail;
  472. return sch;
  473. fail:
  474. sch_free(&sch);
  475. return NULL;
  476. }
  477. int sch_sdp_filename(Scheduler *sch, const char *sdp_filename)
  478. {
  479. av_freep(&sch->sdp_filename);
  480. sch->sdp_filename = av_strdup(sdp_filename);
  481. return sch->sdp_filename ? 0 : AVERROR(ENOMEM);
  482. }
  483. static const AVClass sch_mux_class = {
  484. .class_name = "SchMux",
  485. .version = LIBAVUTIL_VERSION_INT,
  486. .parent_log_context_offset = offsetof(SchMux, task.func_arg),
  487. };
  488. int sch_add_mux(Scheduler *sch, SchThreadFunc func, int (*init)(void *),
  489. void *arg, int sdp_auto, unsigned thread_queue_size)
  490. {
  491. const unsigned idx = sch->nb_mux;
  492. SchMux *mux;
  493. int ret;
  494. ret = GROW_ARRAY(sch->mux, sch->nb_mux);
  495. if (ret < 0)
  496. return ret;
  497. mux = &sch->mux[idx];
  498. mux->class = &sch_mux_class;
  499. mux->init = init;
  500. mux->queue_size = thread_queue_size;
  501. task_init(sch, &mux->task, SCH_NODE_TYPE_MUX, idx, func, arg);
  502. sch->sdp_auto &= sdp_auto;
  503. return idx;
  504. }
  505. int sch_add_mux_stream(Scheduler *sch, unsigned mux_idx)
  506. {
  507. SchMux *mux;
  508. SchMuxStream *ms;
  509. unsigned stream_idx;
  510. int ret;
  511. av_assert0(mux_idx < sch->nb_mux);
  512. mux = &sch->mux[mux_idx];
  513. ret = GROW_ARRAY(mux->streams, mux->nb_streams);
  514. if (ret < 0)
  515. return ret;
  516. stream_idx = mux->nb_streams - 1;
  517. ms = &mux->streams[stream_idx];
  518. ms->pre_mux_queue.fifo = av_fifo_alloc2(8, sizeof(AVPacket*), 0);
  519. if (!ms->pre_mux_queue.fifo)
  520. return AVERROR(ENOMEM);
  521. ms->last_dts = AV_NOPTS_VALUE;
  522. return stream_idx;
  523. }
  524. static const AVClass sch_demux_class = {
  525. .class_name = "SchDemux",
  526. .version = LIBAVUTIL_VERSION_INT,
  527. .parent_log_context_offset = offsetof(SchDemux, task.func_arg),
  528. };
  529. int sch_add_demux(Scheduler *sch, SchThreadFunc func, void *ctx)
  530. {
  531. const unsigned idx = sch->nb_demux;
  532. SchDemux *d;
  533. int ret;
  534. ret = GROW_ARRAY(sch->demux, sch->nb_demux);
  535. if (ret < 0)
  536. return ret;
  537. d = &sch->demux[idx];
  538. task_init(sch, &d->task, SCH_NODE_TYPE_DEMUX, idx, func, ctx);
  539. d->class = &sch_demux_class;
  540. d->send_pkt = av_packet_alloc();
  541. if (!d->send_pkt)
  542. return AVERROR(ENOMEM);
  543. ret = waiter_init(&d->waiter);
  544. if (ret < 0)
  545. return ret;
  546. return idx;
  547. }
  548. int sch_add_demux_stream(Scheduler *sch, unsigned demux_idx)
  549. {
  550. SchDemux *d;
  551. int ret;
  552. av_assert0(demux_idx < sch->nb_demux);
  553. d = &sch->demux[demux_idx];
  554. ret = GROW_ARRAY(d->streams, d->nb_streams);
  555. return ret < 0 ? ret : d->nb_streams - 1;
  556. }
  557. int sch_add_dec_output(Scheduler *sch, unsigned dec_idx)
  558. {
  559. SchDec *dec;
  560. int ret;
  561. av_assert0(dec_idx < sch->nb_dec);
  562. dec = &sch->dec[dec_idx];
  563. ret = GROW_ARRAY(dec->outputs, dec->nb_outputs);
  564. if (ret < 0)
  565. return ret;
  566. return dec->nb_outputs - 1;
  567. }
  568. static const AVClass sch_dec_class = {
  569. .class_name = "SchDec",
  570. .version = LIBAVUTIL_VERSION_INT,
  571. .parent_log_context_offset = offsetof(SchDec, task.func_arg),
  572. };
  573. int sch_add_dec(Scheduler *sch, SchThreadFunc func, void *ctx, int send_end_ts)
  574. {
  575. const unsigned idx = sch->nb_dec;
  576. SchDec *dec;
  577. int ret;
  578. ret = GROW_ARRAY(sch->dec, sch->nb_dec);
  579. if (ret < 0)
  580. return ret;
  581. dec = &sch->dec[idx];
  582. task_init(sch, &dec->task, SCH_NODE_TYPE_DEC, idx, func, ctx);
  583. dec->class = &sch_dec_class;
  584. dec->send_frame = av_frame_alloc();
  585. if (!dec->send_frame)
  586. return AVERROR(ENOMEM);
  587. ret = sch_add_dec_output(sch, idx);
  588. if (ret < 0)
  589. return ret;
  590. ret = queue_alloc(&dec->queue, 1, 0, QUEUE_PACKETS);
  591. if (ret < 0)
  592. return ret;
  593. if (send_end_ts) {
  594. ret = av_thread_message_queue_alloc(&dec->queue_end_ts, 1, sizeof(Timestamp));
  595. if (ret < 0)
  596. return ret;
  597. }
  598. return idx;
  599. }
  600. static const AVClass sch_enc_class = {
  601. .class_name = "SchEnc",
  602. .version = LIBAVUTIL_VERSION_INT,
  603. .parent_log_context_offset = offsetof(SchEnc, task.func_arg),
  604. };
  605. int sch_add_enc(Scheduler *sch, SchThreadFunc func, void *ctx,
  606. int (*open_cb)(void *opaque, const AVFrame *frame))
  607. {
  608. const unsigned idx = sch->nb_enc;
  609. SchEnc *enc;
  610. int ret;
  611. ret = GROW_ARRAY(sch->enc, sch->nb_enc);
  612. if (ret < 0)
  613. return ret;
  614. enc = &sch->enc[idx];
  615. enc->class = &sch_enc_class;
  616. enc->open_cb = open_cb;
  617. enc->sq_idx[0] = -1;
  618. enc->sq_idx[1] = -1;
  619. task_init(sch, &enc->task, SCH_NODE_TYPE_ENC, idx, func, ctx);
  620. enc->send_pkt = av_packet_alloc();
  621. if (!enc->send_pkt)
  622. return AVERROR(ENOMEM);
  623. ret = queue_alloc(&enc->queue, 1, 0, QUEUE_FRAMES);
  624. if (ret < 0)
  625. return ret;
  626. return idx;
  627. }
  628. static const AVClass sch_fg_class = {
  629. .class_name = "SchFilterGraph",
  630. .version = LIBAVUTIL_VERSION_INT,
  631. .parent_log_context_offset = offsetof(SchFilterGraph, task.func_arg),
  632. };
  633. int sch_add_filtergraph(Scheduler *sch, unsigned nb_inputs, unsigned nb_outputs,
  634. SchThreadFunc func, void *ctx)
  635. {
  636. const unsigned idx = sch->nb_filters;
  637. SchFilterGraph *fg;
  638. int ret;
  639. ret = GROW_ARRAY(sch->filters, sch->nb_filters);
  640. if (ret < 0)
  641. return ret;
  642. fg = &sch->filters[idx];
  643. fg->class = &sch_fg_class;
  644. task_init(sch, &fg->task, SCH_NODE_TYPE_FILTER_IN, idx, func, ctx);
  645. if (nb_inputs) {
  646. fg->inputs = av_calloc(nb_inputs, sizeof(*fg->inputs));
  647. if (!fg->inputs)
  648. return AVERROR(ENOMEM);
  649. fg->nb_inputs = nb_inputs;
  650. }
  651. if (nb_outputs) {
  652. fg->outputs = av_calloc(nb_outputs, sizeof(*fg->outputs));
  653. if (!fg->outputs)
  654. return AVERROR(ENOMEM);
  655. fg->nb_outputs = nb_outputs;
  656. }
  657. ret = waiter_init(&fg->waiter);
  658. if (ret < 0)
  659. return ret;
  660. ret = queue_alloc(&fg->queue, fg->nb_inputs + 1, 0, QUEUE_FRAMES);
  661. if (ret < 0)
  662. return ret;
  663. return idx;
  664. }
  665. int sch_add_sq_enc(Scheduler *sch, uint64_t buf_size_us, void *logctx)
  666. {
  667. SchSyncQueue *sq;
  668. int ret;
  669. ret = GROW_ARRAY(sch->sq_enc, sch->nb_sq_enc);
  670. if (ret < 0)
  671. return ret;
  672. sq = &sch->sq_enc[sch->nb_sq_enc - 1];
  673. sq->sq = sq_alloc(SYNC_QUEUE_FRAMES, buf_size_us, logctx);
  674. if (!sq->sq)
  675. return AVERROR(ENOMEM);
  676. sq->frame = av_frame_alloc();
  677. if (!sq->frame)
  678. return AVERROR(ENOMEM);
  679. ret = pthread_mutex_init(&sq->lock, NULL);
  680. if (ret)
  681. return AVERROR(ret);
  682. return sq - sch->sq_enc;
  683. }
  684. int sch_sq_add_enc(Scheduler *sch, unsigned sq_idx, unsigned enc_idx,
  685. int limiting, uint64_t max_frames)
  686. {
  687. SchSyncQueue *sq;
  688. SchEnc *enc;
  689. int ret;
  690. av_assert0(sq_idx < sch->nb_sq_enc);
  691. sq = &sch->sq_enc[sq_idx];
  692. av_assert0(enc_idx < sch->nb_enc);
  693. enc = &sch->enc[enc_idx];
  694. ret = GROW_ARRAY(sq->enc_idx, sq->nb_enc_idx);
  695. if (ret < 0)
  696. return ret;
  697. sq->enc_idx[sq->nb_enc_idx - 1] = enc_idx;
  698. ret = sq_add_stream(sq->sq, limiting);
  699. if (ret < 0)
  700. return ret;
  701. enc->sq_idx[0] = sq_idx;
  702. enc->sq_idx[1] = ret;
  703. if (max_frames != INT64_MAX)
  704. sq_limit_frames(sq->sq, enc->sq_idx[1], max_frames);
  705. return 0;
  706. }
  707. int sch_connect(Scheduler *sch, SchedulerNode src, SchedulerNode dst)
  708. {
  709. int ret;
  710. switch (src.type) {
  711. case SCH_NODE_TYPE_DEMUX: {
  712. SchDemuxStream *ds;
  713. av_assert0(src.idx < sch->nb_demux &&
  714. src.idx_stream < sch->demux[src.idx].nb_streams);
  715. ds = &sch->demux[src.idx].streams[src.idx_stream];
  716. ret = GROW_ARRAY(ds->dst, ds->nb_dst);
  717. if (ret < 0)
  718. return ret;
  719. ds->dst[ds->nb_dst - 1] = dst;
  720. // demuxed packets go to decoding or streamcopy
  721. switch (dst.type) {
  722. case SCH_NODE_TYPE_DEC: {
  723. SchDec *dec;
  724. av_assert0(dst.idx < sch->nb_dec);
  725. dec = &sch->dec[dst.idx];
  726. av_assert0(!dec->src.type);
  727. dec->src = src;
  728. break;
  729. }
  730. case SCH_NODE_TYPE_MUX: {
  731. SchMuxStream *ms;
  732. av_assert0(dst.idx < sch->nb_mux &&
  733. dst.idx_stream < sch->mux[dst.idx].nb_streams);
  734. ms = &sch->mux[dst.idx].streams[dst.idx_stream];
  735. av_assert0(!ms->src.type);
  736. ms->src = src;
  737. break;
  738. }
  739. default: av_assert0(0);
  740. }
  741. break;
  742. }
  743. case SCH_NODE_TYPE_DEC: {
  744. SchDec *dec;
  745. SchDecOutput *o;
  746. av_assert0(src.idx < sch->nb_dec);
  747. dec = &sch->dec[src.idx];
  748. av_assert0(src.idx_stream < dec->nb_outputs);
  749. o = &dec->outputs[src.idx_stream];
  750. ret = GROW_ARRAY(o->dst, o->nb_dst);
  751. if (ret < 0)
  752. return ret;
  753. o->dst[o->nb_dst - 1] = dst;
  754. // decoded frames go to filters or encoding
  755. switch (dst.type) {
  756. case SCH_NODE_TYPE_FILTER_IN: {
  757. SchFilterIn *fi;
  758. av_assert0(dst.idx < sch->nb_filters &&
  759. dst.idx_stream < sch->filters[dst.idx].nb_inputs);
  760. fi = &sch->filters[dst.idx].inputs[dst.idx_stream];
  761. av_assert0(!fi->src.type);
  762. fi->src = src;
  763. break;
  764. }
  765. case SCH_NODE_TYPE_ENC: {
  766. SchEnc *enc;
  767. av_assert0(dst.idx < sch->nb_enc);
  768. enc = &sch->enc[dst.idx];
  769. av_assert0(!enc->src.type);
  770. enc->src = src;
  771. break;
  772. }
  773. default: av_assert0(0);
  774. }
  775. break;
  776. }
  777. case SCH_NODE_TYPE_FILTER_OUT: {
  778. SchFilterOut *fo;
  779. av_assert0(src.idx < sch->nb_filters &&
  780. src.idx_stream < sch->filters[src.idx].nb_outputs);
  781. fo = &sch->filters[src.idx].outputs[src.idx_stream];
  782. av_assert0(!fo->dst.type);
  783. fo->dst = dst;
  784. // filtered frames go to encoding or another filtergraph
  785. switch (dst.type) {
  786. case SCH_NODE_TYPE_ENC: {
  787. SchEnc *enc;
  788. av_assert0(dst.idx < sch->nb_enc);
  789. enc = &sch->enc[dst.idx];
  790. av_assert0(!enc->src.type);
  791. enc->src = src;
  792. break;
  793. }
  794. case SCH_NODE_TYPE_FILTER_IN: {
  795. SchFilterIn *fi;
  796. av_assert0(dst.idx < sch->nb_filters &&
  797. dst.idx_stream < sch->filters[dst.idx].nb_inputs);
  798. fi = &sch->filters[dst.idx].inputs[dst.idx_stream];
  799. av_assert0(!fi->src.type);
  800. fi->src = src;
  801. break;
  802. }
  803. default: av_assert0(0);
  804. }
  805. break;
  806. }
  807. case SCH_NODE_TYPE_ENC: {
  808. SchEnc *enc;
  809. av_assert0(src.idx < sch->nb_enc);
  810. enc = &sch->enc[src.idx];
  811. ret = GROW_ARRAY(enc->dst, enc->nb_dst);
  812. if (ret < 0)
  813. return ret;
  814. enc->dst[enc->nb_dst - 1] = dst;
  815. // encoding packets go to muxing or decoding
  816. switch (dst.type) {
  817. case SCH_NODE_TYPE_MUX: {
  818. SchMuxStream *ms;
  819. av_assert0(dst.idx < sch->nb_mux &&
  820. dst.idx_stream < sch->mux[dst.idx].nb_streams);
  821. ms = &sch->mux[dst.idx].streams[dst.idx_stream];
  822. av_assert0(!ms->src.type);
  823. ms->src = src;
  824. break;
  825. }
  826. case SCH_NODE_TYPE_DEC: {
  827. SchDec *dec;
  828. av_assert0(dst.idx < sch->nb_dec);
  829. dec = &sch->dec[dst.idx];
  830. av_assert0(!dec->src.type);
  831. dec->src = src;
  832. break;
  833. }
  834. default: av_assert0(0);
  835. }
  836. break;
  837. }
  838. default: av_assert0(0);
  839. }
  840. return 0;
  841. }
  842. static int mux_task_start(SchMux *mux)
  843. {
  844. int ret = 0;
  845. ret = task_start(&mux->task);
  846. if (ret < 0)
  847. return ret;
  848. /* flush the pre-muxing queues */
  849. while (1) {
  850. int min_stream = -1;
  851. Timestamp min_ts = { .ts = AV_NOPTS_VALUE };
  852. AVPacket *pkt;
  853. // find the stream with the earliest dts or EOF in pre-muxing queue
  854. for (unsigned i = 0; i < mux->nb_streams; i++) {
  855. SchMuxStream *ms = &mux->streams[i];
  856. if (av_fifo_peek(ms->pre_mux_queue.fifo, &pkt, 1, 0) < 0)
  857. continue;
  858. if (!pkt || pkt->dts == AV_NOPTS_VALUE) {
  859. min_stream = i;
  860. break;
  861. }
  862. if (min_ts.ts == AV_NOPTS_VALUE ||
  863. av_compare_ts(min_ts.ts, min_ts.tb, pkt->dts, pkt->time_base) > 0) {
  864. min_stream = i;
  865. min_ts = (Timestamp){ .ts = pkt->dts, .tb = pkt->time_base };
  866. }
  867. }
  868. if (min_stream >= 0) {
  869. SchMuxStream *ms = &mux->streams[min_stream];
  870. ret = av_fifo_read(ms->pre_mux_queue.fifo, &pkt, 1);
  871. av_assert0(ret >= 0);
  872. if (pkt) {
  873. if (!ms->init_eof)
  874. ret = tq_send(mux->queue, min_stream, pkt);
  875. av_packet_free(&pkt);
  876. if (ret == AVERROR_EOF)
  877. ms->init_eof = 1;
  878. else if (ret < 0)
  879. return ret;
  880. } else
  881. tq_send_finish(mux->queue, min_stream);
  882. continue;
  883. }
  884. break;
  885. }
  886. atomic_store(&mux->mux_started, 1);
  887. return 0;
  888. }
  889. int print_sdp(const char *filename);
  890. static int mux_init(Scheduler *sch, SchMux *mux)
  891. {
  892. int ret;
  893. ret = mux->init(mux->task.func_arg);
  894. if (ret < 0)
  895. return ret;
  896. sch->nb_mux_ready++;
  897. if (sch->sdp_filename || sch->sdp_auto) {
  898. if (sch->nb_mux_ready < sch->nb_mux)
  899. return 0;
  900. ret = print_sdp(sch->sdp_filename);
  901. if (ret < 0) {
  902. av_log(sch, AV_LOG_ERROR, "Error writing the SDP.\n");
  903. return ret;
  904. }
  905. /* SDP is written only after all the muxers are ready, so now we
  906. * start ALL the threads */
  907. for (unsigned i = 0; i < sch->nb_mux; i++) {
  908. ret = mux_task_start(&sch->mux[i]);
  909. if (ret < 0)
  910. return ret;
  911. }
  912. } else {
  913. ret = mux_task_start(mux);
  914. if (ret < 0)
  915. return ret;
  916. }
  917. return 0;
  918. }
  919. void sch_mux_stream_buffering(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
  920. size_t data_threshold, int max_packets)
  921. {
  922. SchMux *mux;
  923. SchMuxStream *ms;
  924. av_assert0(mux_idx < sch->nb_mux);
  925. mux = &sch->mux[mux_idx];
  926. av_assert0(stream_idx < mux->nb_streams);
  927. ms = &mux->streams[stream_idx];
  928. ms->pre_mux_queue.max_packets = max_packets;
  929. ms->pre_mux_queue.data_threshold = data_threshold;
  930. }
  931. int sch_mux_stream_ready(Scheduler *sch, unsigned mux_idx, unsigned stream_idx)
  932. {
  933. SchMux *mux;
  934. int ret = 0;
  935. av_assert0(mux_idx < sch->nb_mux);
  936. mux = &sch->mux[mux_idx];
  937. av_assert0(stream_idx < mux->nb_streams);
  938. pthread_mutex_lock(&sch->mux_ready_lock);
  939. av_assert0(mux->nb_streams_ready < mux->nb_streams);
  940. // this may be called during initialization - do not start
  941. // threads before sch_start() is called
  942. if (++mux->nb_streams_ready == mux->nb_streams &&
  943. sch->state >= SCH_STATE_STARTED)
  944. ret = mux_init(sch, mux);
  945. pthread_mutex_unlock(&sch->mux_ready_lock);
  946. return ret;
  947. }
  948. int sch_mux_sub_heartbeat_add(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
  949. unsigned dec_idx)
  950. {
  951. SchMux *mux;
  952. SchMuxStream *ms;
  953. int ret = 0;
  954. av_assert0(mux_idx < sch->nb_mux);
  955. mux = &sch->mux[mux_idx];
  956. av_assert0(stream_idx < mux->nb_streams);
  957. ms = &mux->streams[stream_idx];
  958. ret = GROW_ARRAY(ms->sub_heartbeat_dst, ms->nb_sub_heartbeat_dst);
  959. if (ret < 0)
  960. return ret;
  961. av_assert0(dec_idx < sch->nb_dec);
  962. ms->sub_heartbeat_dst[ms->nb_sub_heartbeat_dst - 1] = dec_idx;
  963. if (!mux->sub_heartbeat_pkt) {
  964. mux->sub_heartbeat_pkt = av_packet_alloc();
  965. if (!mux->sub_heartbeat_pkt)
  966. return AVERROR(ENOMEM);
  967. }
  968. return 0;
  969. }
  970. static void unchoke_for_stream(Scheduler *sch, SchedulerNode src);
  971. // Unchoke any filter graphs that are downstream of this node, to prevent it
  972. // from getting stuck trying to push data to a full queue
  973. static void unchoke_downstream(Scheduler *sch, SchedulerNode *dst)
  974. {
  975. SchFilterGraph *fg;
  976. SchDec *dec;
  977. SchEnc *enc;
  978. switch (dst->type) {
  979. case SCH_NODE_TYPE_DEC:
  980. dec = &sch->dec[dst->idx];
  981. for (int i = 0; i < dec->nb_outputs; i++)
  982. unchoke_downstream(sch, dec->outputs[i].dst);
  983. break;
  984. case SCH_NODE_TYPE_ENC:
  985. enc = &sch->enc[dst->idx];
  986. for (int i = 0; i < enc->nb_dst; i++)
  987. unchoke_downstream(sch, &enc->dst[i]);
  988. break;
  989. case SCH_NODE_TYPE_MUX:
  990. // muxers are never choked
  991. break;
  992. case SCH_NODE_TYPE_FILTER_IN:
  993. fg = &sch->filters[dst->idx];
  994. if (fg->best_input == fg->nb_inputs) {
  995. fg->waiter.choked_next = 0;
  996. } else {
  997. // ensure that this filter graph is not stuck waiting for
  998. // input from a different upstream demuxer
  999. unchoke_for_stream(sch, fg->inputs[fg->best_input].src);
  1000. }
  1001. break;
  1002. default:
  1003. av_unreachable("Invalid destination node type?");
  1004. break;
  1005. }
  1006. }
  1007. static void unchoke_for_stream(Scheduler *sch, SchedulerNode src)
  1008. {
  1009. while (1) {
  1010. SchFilterGraph *fg;
  1011. SchDemux *demux;
  1012. switch (src.type) {
  1013. case SCH_NODE_TYPE_DEMUX:
  1014. // fed directly by a demuxer (i.e. not through a filtergraph)
  1015. demux = &sch->demux[src.idx];
  1016. if (demux->waiter.choked_next == 0)
  1017. return; // prevent infinite loop
  1018. demux->waiter.choked_next = 0;
  1019. for (int i = 0; i < demux->nb_streams; i++)
  1020. unchoke_downstream(sch, demux->streams[i].dst);
  1021. return;
  1022. case SCH_NODE_TYPE_DEC:
  1023. src = sch->dec[src.idx].src;
  1024. continue;
  1025. case SCH_NODE_TYPE_ENC:
  1026. src = sch->enc[src.idx].src;
  1027. continue;
  1028. case SCH_NODE_TYPE_FILTER_OUT:
  1029. fg = &sch->filters[src.idx];
  1030. // the filtergraph contains internal sources and
  1031. // requested to be scheduled directly
  1032. if (fg->best_input == fg->nb_inputs) {
  1033. fg->waiter.choked_next = 0;
  1034. return;
  1035. }
  1036. src = fg->inputs[fg->best_input].src;
  1037. continue;
  1038. default:
  1039. av_unreachable("Invalid source node type?");
  1040. return;
  1041. }
  1042. }
  1043. }
  1044. static void choke_demux(const Scheduler *sch, int demux_id, int choked)
  1045. {
  1046. av_assert1(demux_id < sch->nb_demux);
  1047. SchDemux *demux = &sch->demux[demux_id];
  1048. for (int i = 0; i < demux->nb_streams; i++) {
  1049. SchedulerNode *dst = demux->streams[i].dst;
  1050. SchFilterGraph *fg;
  1051. switch (dst->type) {
  1052. case SCH_NODE_TYPE_DEC:
  1053. tq_choke(sch->dec[dst->idx].queue, choked);
  1054. break;
  1055. case SCH_NODE_TYPE_ENC:
  1056. tq_choke(sch->enc[dst->idx].queue, choked);
  1057. break;
  1058. case SCH_NODE_TYPE_MUX:
  1059. break;
  1060. case SCH_NODE_TYPE_FILTER_IN:
  1061. fg = &sch->filters[dst->idx];
  1062. if (fg->nb_inputs == 1)
  1063. tq_choke(fg->queue, choked);
  1064. break;
  1065. default:
  1066. av_unreachable("Invalid destination node type?");
  1067. break;
  1068. }
  1069. }
  1070. }
  1071. static void schedule_update_locked(Scheduler *sch)
  1072. {
  1073. int64_t dts;
  1074. int have_unchoked = 0;
  1075. // on termination request all waiters are choked,
  1076. // we are not to unchoke them
  1077. if (atomic_load(&sch->terminate))
  1078. return;
  1079. dts = trailing_dts(sch, 0);
  1080. atomic_store(&sch->last_dts, dts);
  1081. // initialize our internal state
  1082. for (unsigned type = 0; type < 2; type++)
  1083. for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
  1084. SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
  1085. w->choked_prev = atomic_load(&w->choked);
  1086. w->choked_next = 1;
  1087. }
  1088. // figure out the sources that are allowed to proceed
  1089. for (unsigned i = 0; i < sch->nb_mux; i++) {
  1090. SchMux *mux = &sch->mux[i];
  1091. for (unsigned j = 0; j < mux->nb_streams; j++) {
  1092. SchMuxStream *ms = &mux->streams[j];
  1093. // unblock sources for output streams that are not finished
  1094. // and not too far ahead of the trailing stream
  1095. if (ms->source_finished)
  1096. continue;
  1097. if (dts == AV_NOPTS_VALUE && ms->last_dts != AV_NOPTS_VALUE)
  1098. continue;
  1099. if (dts != AV_NOPTS_VALUE && ms->last_dts - dts >= SCHEDULE_TOLERANCE)
  1100. continue;
  1101. // resolve the source to unchoke
  1102. unchoke_for_stream(sch, ms->src);
  1103. have_unchoked = 1;
  1104. }
  1105. }
  1106. // also unchoke any sources feeding into closed filter graph inputs, so
  1107. // that they can observe the downstream EOF
  1108. for (unsigned i = 0; i < sch->nb_filters; i++) {
  1109. SchFilterGraph *fg = &sch->filters[i];
  1110. for (unsigned j = 0; j < fg->nb_inputs; j++) {
  1111. SchFilterIn *fi = &fg->inputs[j];
  1112. if (fi->receive_finished && !fi->send_finished)
  1113. unchoke_for_stream(sch, fi->src);
  1114. }
  1115. }
  1116. // make sure to unchoke at least one source, if still available
  1117. for (unsigned type = 0; !have_unchoked && type < 2; type++)
  1118. for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
  1119. int exited = type ? sch->filters[i].task_exited : sch->demux[i].task_exited;
  1120. SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
  1121. if (!exited) {
  1122. w->choked_next = 0;
  1123. have_unchoked = 1;
  1124. break;
  1125. }
  1126. }
  1127. for (unsigned type = 0; type < 2; type++) {
  1128. for (unsigned i = 0; i < (type ? sch->nb_filters : sch->nb_demux); i++) {
  1129. SchWaiter *w = type ? &sch->filters[i].waiter : &sch->demux[i].waiter;
  1130. if (w->choked_prev != w->choked_next) {
  1131. waiter_set(w, w->choked_next);
  1132. if (!type)
  1133. choke_demux(sch, i, w->choked_next);
  1134. }
  1135. }
  1136. }
  1137. }
  1138. enum {
  1139. CYCLE_NODE_NEW = 0,
  1140. CYCLE_NODE_STARTED,
  1141. CYCLE_NODE_DONE,
  1142. };
  1143. // Finds the filtergraph or muxer upstream of a scheduler node
  1144. static SchedulerNode src_filtergraph(const Scheduler *sch, SchedulerNode src)
  1145. {
  1146. while (1) {
  1147. switch (src.type) {
  1148. case SCH_NODE_TYPE_DEMUX:
  1149. case SCH_NODE_TYPE_FILTER_OUT:
  1150. return src;
  1151. case SCH_NODE_TYPE_DEC:
  1152. src = sch->dec[src.idx].src;
  1153. continue;
  1154. case SCH_NODE_TYPE_ENC:
  1155. src = sch->enc[src.idx].src;
  1156. continue;
  1157. default:
  1158. av_unreachable("Invalid source node type?");
  1159. return (SchedulerNode) {0};
  1160. }
  1161. }
  1162. }
  1163. static int
  1164. check_acyclic_for_output(const Scheduler *sch, SchedulerNode src,
  1165. uint8_t *filters_visited, SchedulerNode *filters_stack)
  1166. {
  1167. unsigned nb_filters_stack = 0;
  1168. memset(filters_visited, 0, sch->nb_filters * sizeof(*filters_visited));
  1169. while (1) {
  1170. const SchFilterGraph *fg = &sch->filters[src.idx];
  1171. filters_visited[src.idx] = CYCLE_NODE_STARTED;
  1172. // descend into every input, depth first
  1173. if (src.idx_stream < fg->nb_inputs) {
  1174. const SchFilterIn *fi = &fg->inputs[src.idx_stream++];
  1175. SchedulerNode node = src_filtergraph(sch, fi->src);
  1176. // connected to demuxer, no cycles possible
  1177. if (node.type == SCH_NODE_TYPE_DEMUX)
  1178. continue;
  1179. // otherwise connected to another filtergraph
  1180. av_assert0(node.type == SCH_NODE_TYPE_FILTER_OUT);
  1181. // found a cycle
  1182. if (filters_visited[node.idx] == CYCLE_NODE_STARTED)
  1183. return AVERROR(EINVAL);
  1184. // place current position on stack and descend
  1185. av_assert0(nb_filters_stack < sch->nb_filters);
  1186. filters_stack[nb_filters_stack++] = src;
  1187. src = (SchedulerNode){ .idx = node.idx, .idx_stream = 0 };
  1188. continue;
  1189. }
  1190. filters_visited[src.idx] = CYCLE_NODE_DONE;
  1191. // previous search finished,
  1192. if (nb_filters_stack) {
  1193. src = filters_stack[--nb_filters_stack];
  1194. continue;
  1195. }
  1196. return 0;
  1197. }
  1198. }
  1199. static int check_acyclic(Scheduler *sch)
  1200. {
  1201. uint8_t *filters_visited = NULL;
  1202. SchedulerNode *filters_stack = NULL;
  1203. int ret = 0;
  1204. if (!sch->nb_filters)
  1205. return 0;
  1206. filters_visited = av_malloc_array(sch->nb_filters, sizeof(*filters_visited));
  1207. if (!filters_visited)
  1208. return AVERROR(ENOMEM);
  1209. filters_stack = av_malloc_array(sch->nb_filters, sizeof(*filters_stack));
  1210. if (!filters_stack) {
  1211. ret = AVERROR(ENOMEM);
  1212. goto fail;
  1213. }
  1214. // trace the transcoding graph upstream from every filtegraph
  1215. for (unsigned i = 0; i < sch->nb_filters; i++) {
  1216. ret = check_acyclic_for_output(sch, (SchedulerNode){ .idx = i },
  1217. filters_visited, filters_stack);
  1218. if (ret < 0) {
  1219. av_log(&sch->filters[i], AV_LOG_ERROR, "Transcoding graph has a cycle\n");
  1220. goto fail;
  1221. }
  1222. }
  1223. fail:
  1224. av_freep(&filters_visited);
  1225. av_freep(&filters_stack);
  1226. return ret;
  1227. }
  1228. static int start_prepare(Scheduler *sch)
  1229. {
  1230. int ret;
  1231. for (unsigned i = 0; i < sch->nb_demux; i++) {
  1232. SchDemux *d = &sch->demux[i];
  1233. for (unsigned j = 0; j < d->nb_streams; j++) {
  1234. SchDemuxStream *ds = &d->streams[j];
  1235. if (!ds->nb_dst) {
  1236. av_log(d, AV_LOG_ERROR,
  1237. "Demuxer stream %u not connected to any sink\n", j);
  1238. return AVERROR(EINVAL);
  1239. }
  1240. ds->dst_finished = av_calloc(ds->nb_dst, sizeof(*ds->dst_finished));
  1241. if (!ds->dst_finished)
  1242. return AVERROR(ENOMEM);
  1243. }
  1244. }
  1245. for (unsigned i = 0; i < sch->nb_dec; i++) {
  1246. SchDec *dec = &sch->dec[i];
  1247. if (!dec->src.type) {
  1248. av_log(dec, AV_LOG_ERROR,
  1249. "Decoder not connected to a source\n");
  1250. return AVERROR(EINVAL);
  1251. }
  1252. for (unsigned j = 0; j < dec->nb_outputs; j++) {
  1253. SchDecOutput *o = &dec->outputs[j];
  1254. if (!o->nb_dst) {
  1255. av_log(dec, AV_LOG_ERROR,
  1256. "Decoder output %u not connected to any sink\n", j);
  1257. return AVERROR(EINVAL);
  1258. }
  1259. o->dst_finished = av_calloc(o->nb_dst, sizeof(*o->dst_finished));
  1260. if (!o->dst_finished)
  1261. return AVERROR(ENOMEM);
  1262. }
  1263. }
  1264. for (unsigned i = 0; i < sch->nb_enc; i++) {
  1265. SchEnc *enc = &sch->enc[i];
  1266. if (!enc->src.type) {
  1267. av_log(enc, AV_LOG_ERROR,
  1268. "Encoder not connected to a source\n");
  1269. return AVERROR(EINVAL);
  1270. }
  1271. if (!enc->nb_dst) {
  1272. av_log(enc, AV_LOG_ERROR,
  1273. "Encoder not connected to any sink\n");
  1274. return AVERROR(EINVAL);
  1275. }
  1276. enc->dst_finished = av_calloc(enc->nb_dst, sizeof(*enc->dst_finished));
  1277. if (!enc->dst_finished)
  1278. return AVERROR(ENOMEM);
  1279. }
  1280. for (unsigned i = 0; i < sch->nb_mux; i++) {
  1281. SchMux *mux = &sch->mux[i];
  1282. for (unsigned j = 0; j < mux->nb_streams; j++) {
  1283. SchMuxStream *ms = &mux->streams[j];
  1284. if (!ms->src.type) {
  1285. av_log(mux, AV_LOG_ERROR,
  1286. "Muxer stream #%u not connected to a source\n", j);
  1287. return AVERROR(EINVAL);
  1288. }
  1289. }
  1290. ret = queue_alloc(&mux->queue, mux->nb_streams, mux->queue_size,
  1291. QUEUE_PACKETS);
  1292. if (ret < 0)
  1293. return ret;
  1294. }
  1295. for (unsigned i = 0; i < sch->nb_filters; i++) {
  1296. SchFilterGraph *fg = &sch->filters[i];
  1297. for (unsigned j = 0; j < fg->nb_inputs; j++) {
  1298. SchFilterIn *fi = &fg->inputs[j];
  1299. if (!fi->src.type) {
  1300. av_log(fg, AV_LOG_ERROR,
  1301. "Filtergraph input %u not connected to a source\n", j);
  1302. return AVERROR(EINVAL);
  1303. }
  1304. }
  1305. for (unsigned j = 0; j < fg->nb_outputs; j++) {
  1306. SchFilterOut *fo = &fg->outputs[j];
  1307. if (!fo->dst.type) {
  1308. av_log(fg, AV_LOG_ERROR,
  1309. "Filtergraph %u output %u not connected to a sink\n", i, j);
  1310. return AVERROR(EINVAL);
  1311. }
  1312. }
  1313. }
  1314. // Check that the transcoding graph has no cycles.
  1315. ret = check_acyclic(sch);
  1316. if (ret < 0)
  1317. return ret;
  1318. return 0;
  1319. }
  1320. int sch_start(Scheduler *sch)
  1321. {
  1322. int ret;
  1323. ret = start_prepare(sch);
  1324. if (ret < 0)
  1325. return ret;
  1326. av_assert0(sch->state == SCH_STATE_UNINIT);
  1327. sch->state = SCH_STATE_STARTED;
  1328. for (unsigned i = 0; i < sch->nb_mux; i++) {
  1329. SchMux *mux = &sch->mux[i];
  1330. if (mux->nb_streams_ready == mux->nb_streams) {
  1331. ret = mux_init(sch, mux);
  1332. if (ret < 0)
  1333. goto fail;
  1334. }
  1335. }
  1336. for (unsigned i = 0; i < sch->nb_enc; i++) {
  1337. SchEnc *enc = &sch->enc[i];
  1338. ret = task_start(&enc->task);
  1339. if (ret < 0)
  1340. goto fail;
  1341. }
  1342. for (unsigned i = 0; i < sch->nb_filters; i++) {
  1343. SchFilterGraph *fg = &sch->filters[i];
  1344. ret = task_start(&fg->task);
  1345. if (ret < 0)
  1346. goto fail;
  1347. }
  1348. for (unsigned i = 0; i < sch->nb_dec; i++) {
  1349. SchDec *dec = &sch->dec[i];
  1350. ret = task_start(&dec->task);
  1351. if (ret < 0)
  1352. goto fail;
  1353. }
  1354. for (unsigned i = 0; i < sch->nb_demux; i++) {
  1355. SchDemux *d = &sch->demux[i];
  1356. if (!d->nb_streams)
  1357. continue;
  1358. ret = task_start(&d->task);
  1359. if (ret < 0)
  1360. goto fail;
  1361. }
  1362. pthread_mutex_lock(&sch->schedule_lock);
  1363. schedule_update_locked(sch);
  1364. pthread_mutex_unlock(&sch->schedule_lock);
  1365. return 0;
  1366. fail:
  1367. sch_stop(sch, NULL);
  1368. return ret;
  1369. }
  1370. int sch_wait(Scheduler *sch, uint64_t timeout_us, int64_t *transcode_ts)
  1371. {
  1372. int ret;
  1373. // convert delay to absolute timestamp
  1374. timeout_us += av_gettime();
  1375. pthread_mutex_lock(&sch->finish_lock);
  1376. if (sch->nb_mux_done < sch->nb_mux) {
  1377. struct timespec tv = { .tv_sec = timeout_us / 1000000,
  1378. .tv_nsec = (timeout_us % 1000000) * 1000 };
  1379. pthread_cond_timedwait(&sch->finish_cond, &sch->finish_lock, &tv);
  1380. }
  1381. // abort transcoding if any task failed
  1382. ret = sch->nb_mux_done == sch->nb_mux || sch->task_failed;
  1383. pthread_mutex_unlock(&sch->finish_lock);
  1384. *transcode_ts = atomic_load(&sch->last_dts);
  1385. return ret;
  1386. }
  1387. static int enc_open(Scheduler *sch, SchEnc *enc, const AVFrame *frame)
  1388. {
  1389. int ret;
  1390. ret = enc->open_cb(enc->task.func_arg, frame);
  1391. if (ret < 0)
  1392. return ret;
  1393. // ret>0 signals audio frame size, which means sync queue must
  1394. // have been enabled during encoder creation
  1395. if (ret > 0) {
  1396. SchSyncQueue *sq;
  1397. av_assert0(enc->sq_idx[0] >= 0);
  1398. sq = &sch->sq_enc[enc->sq_idx[0]];
  1399. pthread_mutex_lock(&sq->lock);
  1400. sq_frame_samples(sq->sq, enc->sq_idx[1], ret);
  1401. pthread_mutex_unlock(&sq->lock);
  1402. }
  1403. return 0;
  1404. }
  1405. static int send_to_enc_thread(Scheduler *sch, SchEnc *enc, AVFrame *frame)
  1406. {
  1407. int ret;
  1408. if (!frame) {
  1409. tq_send_finish(enc->queue, 0);
  1410. return 0;
  1411. }
  1412. if (enc->in_finished)
  1413. return AVERROR_EOF;
  1414. ret = tq_send(enc->queue, 0, frame);
  1415. if (ret < 0)
  1416. enc->in_finished = 1;
  1417. return ret;
  1418. }
  1419. static int send_to_enc_sq(Scheduler *sch, SchEnc *enc, AVFrame *frame)
  1420. {
  1421. SchSyncQueue *sq = &sch->sq_enc[enc->sq_idx[0]];
  1422. int ret = 0;
  1423. // inform the scheduling code that no more input will arrive along this path;
  1424. // this is necessary because the sync queue may not send an EOF downstream
  1425. // until other streams finish
  1426. // TODO: consider a cleaner way of passing this information through
  1427. // the pipeline
  1428. if (!frame) {
  1429. for (unsigned i = 0; i < enc->nb_dst; i++) {
  1430. SchMux *mux;
  1431. SchMuxStream *ms;
  1432. if (enc->dst[i].type != SCH_NODE_TYPE_MUX)
  1433. continue;
  1434. mux = &sch->mux[enc->dst[i].idx];
  1435. ms = &mux->streams[enc->dst[i].idx_stream];
  1436. pthread_mutex_lock(&sch->schedule_lock);
  1437. ms->source_finished = 1;
  1438. schedule_update_locked(sch);
  1439. pthread_mutex_unlock(&sch->schedule_lock);
  1440. }
  1441. }
  1442. pthread_mutex_lock(&sq->lock);
  1443. ret = sq_send(sq->sq, enc->sq_idx[1], SQFRAME(frame));
  1444. if (ret < 0)
  1445. goto finish;
  1446. while (1) {
  1447. SchEnc *enc;
  1448. // TODO: the SQ API should be extended to allow returning EOF
  1449. // for individual streams
  1450. ret = sq_receive(sq->sq, -1, SQFRAME(sq->frame));
  1451. if (ret < 0) {
  1452. ret = (ret == AVERROR(EAGAIN)) ? 0 : ret;
  1453. break;
  1454. }
  1455. enc = &sch->enc[sq->enc_idx[ret]];
  1456. ret = send_to_enc_thread(sch, enc, sq->frame);
  1457. if (ret < 0) {
  1458. av_frame_unref(sq->frame);
  1459. if (ret != AVERROR_EOF)
  1460. break;
  1461. sq_send(sq->sq, enc->sq_idx[1], SQFRAME(NULL));
  1462. continue;
  1463. }
  1464. }
  1465. if (ret < 0) {
  1466. // close all encoders fed from this sync queue
  1467. for (unsigned i = 0; i < sq->nb_enc_idx; i++) {
  1468. int err = send_to_enc_thread(sch, &sch->enc[sq->enc_idx[i]], NULL);
  1469. // if the sync queue error is EOF and closing the encoder
  1470. // produces a more serious error, make sure to pick the latter
  1471. ret = err_merge((ret == AVERROR_EOF && err < 0) ? 0 : ret, err);
  1472. }
  1473. }
  1474. finish:
  1475. pthread_mutex_unlock(&sq->lock);
  1476. return ret;
  1477. }
  1478. static int send_to_enc(Scheduler *sch, SchEnc *enc, AVFrame *frame)
  1479. {
  1480. if (enc->open_cb && frame && !enc->opened) {
  1481. int ret = enc_open(sch, enc, frame);
  1482. if (ret < 0)
  1483. return ret;
  1484. enc->opened = 1;
  1485. // discard empty frames that only carry encoder init parameters
  1486. if (!frame->buf[0]) {
  1487. av_frame_unref(frame);
  1488. return 0;
  1489. }
  1490. }
  1491. return (enc->sq_idx[0] >= 0) ?
  1492. send_to_enc_sq (sch, enc, frame) :
  1493. send_to_enc_thread(sch, enc, frame);
  1494. }
  1495. static int mux_queue_packet(SchMux *mux, SchMuxStream *ms, AVPacket *pkt)
  1496. {
  1497. PreMuxQueue *q = &ms->pre_mux_queue;
  1498. AVPacket *tmp_pkt = NULL;
  1499. int ret;
  1500. if (!av_fifo_can_write(q->fifo)) {
  1501. size_t packets = av_fifo_can_read(q->fifo);
  1502. size_t pkt_size = pkt ? pkt->size : 0;
  1503. int thresh_reached = (q->data_size + pkt_size) > q->data_threshold;
  1504. size_t max_packets = thresh_reached ? q->max_packets : SIZE_MAX;
  1505. size_t new_size = FFMIN(2 * packets, max_packets);
  1506. if (new_size <= packets) {
  1507. av_log(mux, AV_LOG_ERROR,
  1508. "Too many packets buffered for output stream.\n");
  1509. return AVERROR_BUFFER_TOO_SMALL;
  1510. }
  1511. ret = av_fifo_grow2(q->fifo, new_size - packets);
  1512. if (ret < 0)
  1513. return ret;
  1514. }
  1515. if (pkt) {
  1516. tmp_pkt = av_packet_alloc();
  1517. if (!tmp_pkt)
  1518. return AVERROR(ENOMEM);
  1519. av_packet_move_ref(tmp_pkt, pkt);
  1520. q->data_size += tmp_pkt->size;
  1521. }
  1522. av_fifo_write(q->fifo, &tmp_pkt, 1);
  1523. return 0;
  1524. }
  1525. static int send_to_mux(Scheduler *sch, SchMux *mux, unsigned stream_idx,
  1526. AVPacket *pkt)
  1527. {
  1528. SchMuxStream *ms = &mux->streams[stream_idx];
  1529. int64_t dts = (pkt && pkt->dts != AV_NOPTS_VALUE) ?
  1530. av_rescale_q(pkt->dts + pkt->duration, pkt->time_base, AV_TIME_BASE_Q) :
  1531. AV_NOPTS_VALUE;
  1532. // queue the packet if the muxer cannot be started yet
  1533. if (!atomic_load(&mux->mux_started)) {
  1534. int queued = 0;
  1535. // the muxer could have started between the above atomic check and
  1536. // locking the mutex, then this block falls through to normal send path
  1537. pthread_mutex_lock(&sch->mux_ready_lock);
  1538. if (!atomic_load(&mux->mux_started)) {
  1539. int ret = mux_queue_packet(mux, ms, pkt);
  1540. queued = ret < 0 ? ret : 1;
  1541. }
  1542. pthread_mutex_unlock(&sch->mux_ready_lock);
  1543. if (queued < 0)
  1544. return queued;
  1545. else if (queued)
  1546. goto update_schedule;
  1547. }
  1548. if (pkt) {
  1549. int ret;
  1550. if (ms->init_eof)
  1551. return AVERROR_EOF;
  1552. ret = tq_send(mux->queue, stream_idx, pkt);
  1553. if (ret < 0)
  1554. return ret;
  1555. } else
  1556. tq_send_finish(mux->queue, stream_idx);
  1557. update_schedule:
  1558. // TODO: use atomics to check whether this changes trailing dts
  1559. // to avoid locking unnecessarily
  1560. if (dts != AV_NOPTS_VALUE || !pkt) {
  1561. pthread_mutex_lock(&sch->schedule_lock);
  1562. if (pkt) ms->last_dts = dts;
  1563. else ms->source_finished = 1;
  1564. schedule_update_locked(sch);
  1565. pthread_mutex_unlock(&sch->schedule_lock);
  1566. }
  1567. return 0;
  1568. }
  1569. static int
  1570. demux_stream_send_to_dst(Scheduler *sch, const SchedulerNode dst,
  1571. uint8_t *dst_finished, AVPacket *pkt, unsigned flags)
  1572. {
  1573. int ret;
  1574. if (*dst_finished)
  1575. return AVERROR_EOF;
  1576. if (pkt && dst.type == SCH_NODE_TYPE_MUX &&
  1577. (flags & DEMUX_SEND_STREAMCOPY_EOF)) {
  1578. av_packet_unref(pkt);
  1579. pkt = NULL;
  1580. }
  1581. if (!pkt)
  1582. goto finish;
  1583. ret = (dst.type == SCH_NODE_TYPE_MUX) ?
  1584. send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, pkt) :
  1585. tq_send(sch->dec[dst.idx].queue, 0, pkt);
  1586. if (ret == AVERROR_EOF)
  1587. goto finish;
  1588. return ret;
  1589. finish:
  1590. if (dst.type == SCH_NODE_TYPE_MUX)
  1591. send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, NULL);
  1592. else
  1593. tq_send_finish(sch->dec[dst.idx].queue, 0);
  1594. *dst_finished = 1;
  1595. return AVERROR_EOF;
  1596. }
  1597. static int demux_send_for_stream(Scheduler *sch, SchDemux *d, SchDemuxStream *ds,
  1598. AVPacket *pkt, unsigned flags)
  1599. {
  1600. unsigned nb_done = 0;
  1601. for (unsigned i = 0; i < ds->nb_dst; i++) {
  1602. AVPacket *to_send = pkt;
  1603. uint8_t *finished = &ds->dst_finished[i];
  1604. int ret;
  1605. // sending a packet consumes it, so make a temporary reference if needed
  1606. if (pkt && i < ds->nb_dst - 1) {
  1607. to_send = d->send_pkt;
  1608. ret = av_packet_ref(to_send, pkt);
  1609. if (ret < 0)
  1610. return ret;
  1611. }
  1612. ret = demux_stream_send_to_dst(sch, ds->dst[i], finished, to_send, flags);
  1613. if (to_send)
  1614. av_packet_unref(to_send);
  1615. if (ret == AVERROR_EOF)
  1616. nb_done++;
  1617. else if (ret < 0)
  1618. return ret;
  1619. }
  1620. return (nb_done == ds->nb_dst) ? AVERROR_EOF : 0;
  1621. }
  1622. static int demux_flush(Scheduler *sch, SchDemux *d, AVPacket *pkt)
  1623. {
  1624. Timestamp max_end_ts = (Timestamp){ .ts = AV_NOPTS_VALUE };
  1625. av_assert0(!pkt->buf && !pkt->data && !pkt->side_data_elems);
  1626. for (unsigned i = 0; i < d->nb_streams; i++) {
  1627. SchDemuxStream *ds = &d->streams[i];
  1628. for (unsigned j = 0; j < ds->nb_dst; j++) {
  1629. const SchedulerNode *dst = &ds->dst[j];
  1630. SchDec *dec;
  1631. int ret;
  1632. if (ds->dst_finished[j] || dst->type != SCH_NODE_TYPE_DEC)
  1633. continue;
  1634. dec = &sch->dec[dst->idx];
  1635. ret = tq_send(dec->queue, 0, pkt);
  1636. if (ret < 0)
  1637. return ret;
  1638. if (dec->queue_end_ts) {
  1639. Timestamp ts;
  1640. ret = av_thread_message_queue_recv(dec->queue_end_ts, &ts, 0);
  1641. if (ret < 0)
  1642. return ret;
  1643. if (max_end_ts.ts == AV_NOPTS_VALUE ||
  1644. (ts.ts != AV_NOPTS_VALUE &&
  1645. av_compare_ts(max_end_ts.ts, max_end_ts.tb, ts.ts, ts.tb) < 0))
  1646. max_end_ts = ts;
  1647. }
  1648. }
  1649. }
  1650. pkt->pts = max_end_ts.ts;
  1651. pkt->time_base = max_end_ts.tb;
  1652. return 0;
  1653. }
  1654. int sch_demux_send(Scheduler *sch, unsigned demux_idx, AVPacket *pkt,
  1655. unsigned flags)
  1656. {
  1657. SchDemux *d;
  1658. int terminate;
  1659. av_assert0(demux_idx < sch->nb_demux);
  1660. d = &sch->demux[demux_idx];
  1661. terminate = waiter_wait(sch, &d->waiter);
  1662. if (terminate)
  1663. return AVERROR_EXIT;
  1664. // flush the downstreams after seek
  1665. if (pkt->stream_index == -1)
  1666. return demux_flush(sch, d, pkt);
  1667. av_assert0(pkt->stream_index < d->nb_streams);
  1668. return demux_send_for_stream(sch, d, &d->streams[pkt->stream_index], pkt, flags);
  1669. }
  1670. static int demux_done(Scheduler *sch, unsigned demux_idx)
  1671. {
  1672. SchDemux *d = &sch->demux[demux_idx];
  1673. int ret = 0;
  1674. for (unsigned i = 0; i < d->nb_streams; i++) {
  1675. int err = demux_send_for_stream(sch, d, &d->streams[i], NULL, 0);
  1676. if (err != AVERROR_EOF)
  1677. ret = err_merge(ret, err);
  1678. }
  1679. pthread_mutex_lock(&sch->schedule_lock);
  1680. d->task_exited = 1;
  1681. schedule_update_locked(sch);
  1682. pthread_mutex_unlock(&sch->schedule_lock);
  1683. return ret;
  1684. }
  1685. int sch_mux_receive(Scheduler *sch, unsigned mux_idx, AVPacket *pkt)
  1686. {
  1687. SchMux *mux;
  1688. int ret, stream_idx;
  1689. av_assert0(mux_idx < sch->nb_mux);
  1690. mux = &sch->mux[mux_idx];
  1691. ret = tq_receive(mux->queue, &stream_idx, pkt);
  1692. pkt->stream_index = stream_idx;
  1693. return ret;
  1694. }
  1695. void sch_mux_receive_finish(Scheduler *sch, unsigned mux_idx, unsigned stream_idx)
  1696. {
  1697. SchMux *mux;
  1698. av_assert0(mux_idx < sch->nb_mux);
  1699. mux = &sch->mux[mux_idx];
  1700. av_assert0(stream_idx < mux->nb_streams);
  1701. tq_receive_finish(mux->queue, stream_idx);
  1702. pthread_mutex_lock(&sch->schedule_lock);
  1703. mux->streams[stream_idx].source_finished = 1;
  1704. schedule_update_locked(sch);
  1705. pthread_mutex_unlock(&sch->schedule_lock);
  1706. }
  1707. int sch_mux_sub_heartbeat(Scheduler *sch, unsigned mux_idx, unsigned stream_idx,
  1708. const AVPacket *pkt)
  1709. {
  1710. SchMux *mux;
  1711. SchMuxStream *ms;
  1712. av_assert0(mux_idx < sch->nb_mux);
  1713. mux = &sch->mux[mux_idx];
  1714. av_assert0(stream_idx < mux->nb_streams);
  1715. ms = &mux->streams[stream_idx];
  1716. for (unsigned i = 0; i < ms->nb_sub_heartbeat_dst; i++) {
  1717. SchDec *dst = &sch->dec[ms->sub_heartbeat_dst[i]];
  1718. int ret;
  1719. ret = av_packet_copy_props(mux->sub_heartbeat_pkt, pkt);
  1720. if (ret < 0)
  1721. return ret;
  1722. tq_send(dst->queue, 0, mux->sub_heartbeat_pkt);
  1723. }
  1724. return 0;
  1725. }
  1726. static int mux_done(Scheduler *sch, unsigned mux_idx)
  1727. {
  1728. SchMux *mux = &sch->mux[mux_idx];
  1729. pthread_mutex_lock(&sch->schedule_lock);
  1730. for (unsigned i = 0; i < mux->nb_streams; i++) {
  1731. tq_receive_finish(mux->queue, i);
  1732. mux->streams[i].source_finished = 1;
  1733. }
  1734. schedule_update_locked(sch);
  1735. pthread_mutex_unlock(&sch->schedule_lock);
  1736. pthread_mutex_lock(&sch->finish_lock);
  1737. av_assert0(sch->nb_mux_done < sch->nb_mux);
  1738. sch->nb_mux_done++;
  1739. pthread_cond_signal(&sch->finish_cond);
  1740. pthread_mutex_unlock(&sch->finish_lock);
  1741. return 0;
  1742. }
  1743. int sch_dec_receive(Scheduler *sch, unsigned dec_idx, AVPacket *pkt)
  1744. {
  1745. SchDec *dec;
  1746. int ret, dummy;
  1747. av_assert0(dec_idx < sch->nb_dec);
  1748. dec = &sch->dec[dec_idx];
  1749. // the decoder should have given us post-flush end timestamp in pkt
  1750. if (dec->expect_end_ts) {
  1751. Timestamp ts = (Timestamp){ .ts = pkt->pts, .tb = pkt->time_base };
  1752. ret = av_thread_message_queue_send(dec->queue_end_ts, &ts, 0);
  1753. if (ret < 0)
  1754. return ret;
  1755. dec->expect_end_ts = 0;
  1756. }
  1757. ret = tq_receive(dec->queue, &dummy, pkt);
  1758. av_assert0(dummy <= 0);
  1759. // got a flush packet, on the next call to this function the decoder
  1760. // will give us post-flush end timestamp
  1761. if (ret >= 0 && !pkt->data && !pkt->side_data_elems && dec->queue_end_ts)
  1762. dec->expect_end_ts = 1;
  1763. return ret;
  1764. }
  1765. static int send_to_filter(Scheduler *sch, SchFilterGraph *fg,
  1766. unsigned in_idx, AVFrame *frame)
  1767. {
  1768. if (frame)
  1769. return tq_send(fg->queue, in_idx, frame);
  1770. if (!fg->inputs[in_idx].send_finished) {
  1771. fg->inputs[in_idx].send_finished = 1;
  1772. tq_send_finish(fg->queue, in_idx);
  1773. // close the control stream when all actual inputs are done
  1774. if (atomic_fetch_add(&fg->nb_inputs_finished_send, 1) == fg->nb_inputs - 1)
  1775. tq_send_finish(fg->queue, fg->nb_inputs);
  1776. }
  1777. return 0;
  1778. }
  1779. static int dec_send_to_dst(Scheduler *sch, const SchedulerNode dst,
  1780. uint8_t *dst_finished, AVFrame *frame)
  1781. {
  1782. int ret;
  1783. if (*dst_finished)
  1784. return AVERROR_EOF;
  1785. if (!frame)
  1786. goto finish;
  1787. ret = (dst.type == SCH_NODE_TYPE_FILTER_IN) ?
  1788. send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, frame) :
  1789. send_to_enc(sch, &sch->enc[dst.idx], frame);
  1790. if (ret == AVERROR_EOF)
  1791. goto finish;
  1792. return ret;
  1793. finish:
  1794. if (dst.type == SCH_NODE_TYPE_FILTER_IN)
  1795. send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, NULL);
  1796. else
  1797. send_to_enc(sch, &sch->enc[dst.idx], NULL);
  1798. *dst_finished = 1;
  1799. return AVERROR_EOF;
  1800. }
  1801. int sch_dec_send(Scheduler *sch, unsigned dec_idx,
  1802. unsigned out_idx, AVFrame *frame)
  1803. {
  1804. SchDec *dec;
  1805. SchDecOutput *o;
  1806. int ret;
  1807. unsigned nb_done = 0;
  1808. av_assert0(dec_idx < sch->nb_dec);
  1809. dec = &sch->dec[dec_idx];
  1810. av_assert0(out_idx < dec->nb_outputs);
  1811. o = &dec->outputs[out_idx];
  1812. for (unsigned i = 0; i < o->nb_dst; i++) {
  1813. uint8_t *finished = &o->dst_finished[i];
  1814. AVFrame *to_send = frame;
  1815. // sending a frame consumes it, so make a temporary reference if needed
  1816. if (i < o->nb_dst - 1) {
  1817. to_send = dec->send_frame;
  1818. // frame may sometimes contain props only,
  1819. // e.g. to signal EOF timestamp
  1820. ret = frame->buf[0] ? av_frame_ref(to_send, frame) :
  1821. av_frame_copy_props(to_send, frame);
  1822. if (ret < 0)
  1823. return ret;
  1824. }
  1825. ret = dec_send_to_dst(sch, o->dst[i], finished, to_send);
  1826. if (ret < 0) {
  1827. av_frame_unref(to_send);
  1828. if (ret == AVERROR_EOF) {
  1829. nb_done++;
  1830. continue;
  1831. }
  1832. return ret;
  1833. }
  1834. }
  1835. return (nb_done == o->nb_dst) ? AVERROR_EOF : 0;
  1836. }
  1837. static int dec_done(Scheduler *sch, unsigned dec_idx)
  1838. {
  1839. SchDec *dec = &sch->dec[dec_idx];
  1840. int ret = 0;
  1841. tq_receive_finish(dec->queue, 0);
  1842. // make sure our source does not get stuck waiting for end timestamps
  1843. // that will never arrive
  1844. if (dec->queue_end_ts)
  1845. av_thread_message_queue_set_err_recv(dec->queue_end_ts, AVERROR_EOF);
  1846. for (unsigned i = 0; i < dec->nb_outputs; i++) {
  1847. SchDecOutput *o = &dec->outputs[i];
  1848. for (unsigned j = 0; j < o->nb_dst; j++) {
  1849. int err = dec_send_to_dst(sch, o->dst[j], &o->dst_finished[j], NULL);
  1850. if (err < 0 && err != AVERROR_EOF)
  1851. ret = err_merge(ret, err);
  1852. }
  1853. }
  1854. return ret;
  1855. }
  1856. int sch_enc_receive(Scheduler *sch, unsigned enc_idx, AVFrame *frame)
  1857. {
  1858. SchEnc *enc;
  1859. int ret, dummy;
  1860. av_assert0(enc_idx < sch->nb_enc);
  1861. enc = &sch->enc[enc_idx];
  1862. ret = tq_receive(enc->queue, &dummy, frame);
  1863. av_assert0(dummy <= 0);
  1864. return ret;
  1865. }
  1866. static int enc_send_to_dst(Scheduler *sch, const SchedulerNode dst,
  1867. uint8_t *dst_finished, AVPacket *pkt)
  1868. {
  1869. int ret;
  1870. if (*dst_finished)
  1871. return AVERROR_EOF;
  1872. if (!pkt)
  1873. goto finish;
  1874. ret = (dst.type == SCH_NODE_TYPE_MUX) ?
  1875. send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, pkt) :
  1876. tq_send(sch->dec[dst.idx].queue, 0, pkt);
  1877. if (ret == AVERROR_EOF)
  1878. goto finish;
  1879. return ret;
  1880. finish:
  1881. if (dst.type == SCH_NODE_TYPE_MUX)
  1882. send_to_mux(sch, &sch->mux[dst.idx], dst.idx_stream, NULL);
  1883. else
  1884. tq_send_finish(sch->dec[dst.idx].queue, 0);
  1885. *dst_finished = 1;
  1886. return AVERROR_EOF;
  1887. }
  1888. int sch_enc_send(Scheduler *sch, unsigned enc_idx, AVPacket *pkt)
  1889. {
  1890. SchEnc *enc;
  1891. int ret;
  1892. av_assert0(enc_idx < sch->nb_enc);
  1893. enc = &sch->enc[enc_idx];
  1894. for (unsigned i = 0; i < enc->nb_dst; i++) {
  1895. uint8_t *finished = &enc->dst_finished[i];
  1896. AVPacket *to_send = pkt;
  1897. // sending a packet consumes it, so make a temporary reference if needed
  1898. if (i < enc->nb_dst - 1) {
  1899. to_send = enc->send_pkt;
  1900. ret = av_packet_ref(to_send, pkt);
  1901. if (ret < 0)
  1902. return ret;
  1903. }
  1904. ret = enc_send_to_dst(sch, enc->dst[i], finished, to_send);
  1905. if (ret < 0) {
  1906. av_packet_unref(to_send);
  1907. if (ret == AVERROR_EOF)
  1908. continue;
  1909. return ret;
  1910. }
  1911. }
  1912. return 0;
  1913. }
  1914. static int enc_done(Scheduler *sch, unsigned enc_idx)
  1915. {
  1916. SchEnc *enc = &sch->enc[enc_idx];
  1917. int ret = 0;
  1918. tq_receive_finish(enc->queue, 0);
  1919. for (unsigned i = 0; i < enc->nb_dst; i++) {
  1920. int err = enc_send_to_dst(sch, enc->dst[i], &enc->dst_finished[i], NULL);
  1921. if (err < 0 && err != AVERROR_EOF)
  1922. ret = err_merge(ret, err);
  1923. }
  1924. return ret;
  1925. }
  1926. int sch_filter_receive(Scheduler *sch, unsigned fg_idx,
  1927. unsigned *in_idx, AVFrame *frame)
  1928. {
  1929. SchFilterGraph *fg;
  1930. av_assert0(fg_idx < sch->nb_filters);
  1931. fg = &sch->filters[fg_idx];
  1932. av_assert0(*in_idx <= fg->nb_inputs);
  1933. // update scheduling to account for desired input stream, if it changed
  1934. //
  1935. // this check needs no locking because only the filtering thread
  1936. // updates this value
  1937. if (*in_idx != fg->best_input) {
  1938. pthread_mutex_lock(&sch->schedule_lock);
  1939. fg->best_input = *in_idx;
  1940. schedule_update_locked(sch);
  1941. pthread_mutex_unlock(&sch->schedule_lock);
  1942. }
  1943. if (*in_idx == fg->nb_inputs) {
  1944. int terminate = waiter_wait(sch, &fg->waiter);
  1945. return terminate ? AVERROR_EOF : AVERROR(EAGAIN);
  1946. }
  1947. while (1) {
  1948. int ret, idx;
  1949. ret = tq_receive(fg->queue, &idx, frame);
  1950. if (idx < 0)
  1951. return AVERROR_EOF;
  1952. else if (ret >= 0) {
  1953. *in_idx = idx;
  1954. return 0;
  1955. }
  1956. // disregard EOFs for specific streams - they should always be
  1957. // preceded by an EOF frame
  1958. }
  1959. }
  1960. void sch_filter_receive_finish(Scheduler *sch, unsigned fg_idx, unsigned in_idx)
  1961. {
  1962. SchFilterGraph *fg;
  1963. SchFilterIn *fi;
  1964. av_assert0(fg_idx < sch->nb_filters);
  1965. fg = &sch->filters[fg_idx];
  1966. av_assert0(in_idx < fg->nb_inputs);
  1967. fi = &fg->inputs[in_idx];
  1968. pthread_mutex_lock(&sch->schedule_lock);
  1969. if (!fi->receive_finished) {
  1970. fi->receive_finished = 1;
  1971. tq_receive_finish(fg->queue, in_idx);
  1972. // close the control stream when all actual inputs are done
  1973. if (++fg->nb_inputs_finished_receive == fg->nb_inputs)
  1974. tq_receive_finish(fg->queue, fg->nb_inputs);
  1975. schedule_update_locked(sch);
  1976. }
  1977. pthread_mutex_unlock(&sch->schedule_lock);
  1978. }
  1979. int sch_filter_send(Scheduler *sch, unsigned fg_idx, unsigned out_idx, AVFrame *frame)
  1980. {
  1981. SchFilterGraph *fg;
  1982. SchedulerNode dst;
  1983. int ret;
  1984. av_assert0(fg_idx < sch->nb_filters);
  1985. fg = &sch->filters[fg_idx];
  1986. av_assert0(out_idx < fg->nb_outputs);
  1987. dst = fg->outputs[out_idx].dst;
  1988. if (dst.type == SCH_NODE_TYPE_ENC) {
  1989. ret = send_to_enc(sch, &sch->enc[dst.idx], frame);
  1990. if (ret == AVERROR_EOF)
  1991. send_to_enc(sch, &sch->enc[dst.idx], NULL);
  1992. } else {
  1993. ret = send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, frame);
  1994. if (ret == AVERROR_EOF)
  1995. send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, NULL);
  1996. }
  1997. return ret;
  1998. }
  1999. static int filter_done(Scheduler *sch, unsigned fg_idx)
  2000. {
  2001. SchFilterGraph *fg = &sch->filters[fg_idx];
  2002. int ret = 0;
  2003. for (unsigned i = 0; i <= fg->nb_inputs; i++)
  2004. tq_receive_finish(fg->queue, i);
  2005. for (unsigned i = 0; i < fg->nb_outputs; i++) {
  2006. SchedulerNode dst = fg->outputs[i].dst;
  2007. int err = (dst.type == SCH_NODE_TYPE_ENC) ?
  2008. send_to_enc (sch, &sch->enc[dst.idx], NULL) :
  2009. send_to_filter(sch, &sch->filters[dst.idx], dst.idx_stream, NULL);
  2010. if (err < 0 && err != AVERROR_EOF)
  2011. ret = err_merge(ret, err);
  2012. }
  2013. pthread_mutex_lock(&sch->schedule_lock);
  2014. fg->task_exited = 1;
  2015. schedule_update_locked(sch);
  2016. pthread_mutex_unlock(&sch->schedule_lock);
  2017. return ret;
  2018. }
  2019. int sch_filter_command(Scheduler *sch, unsigned fg_idx, AVFrame *frame)
  2020. {
  2021. SchFilterGraph *fg;
  2022. av_assert0(fg_idx < sch->nb_filters);
  2023. fg = &sch->filters[fg_idx];
  2024. return send_to_filter(sch, fg, fg->nb_inputs, frame);
  2025. }
  2026. void sch_filter_choke_inputs(Scheduler *sch, unsigned fg_idx)
  2027. {
  2028. SchFilterGraph *fg;
  2029. av_assert0(fg_idx < sch->nb_filters);
  2030. fg = &sch->filters[fg_idx];
  2031. pthread_mutex_lock(&sch->schedule_lock);
  2032. fg->best_input = fg->nb_inputs;
  2033. schedule_update_locked(sch);
  2034. pthread_mutex_unlock(&sch->schedule_lock);
  2035. }
  2036. static int task_cleanup(Scheduler *sch, SchedulerNode node)
  2037. {
  2038. switch (node.type) {
  2039. case SCH_NODE_TYPE_DEMUX: return demux_done (sch, node.idx);
  2040. case SCH_NODE_TYPE_MUX: return mux_done (sch, node.idx);
  2041. case SCH_NODE_TYPE_DEC: return dec_done (sch, node.idx);
  2042. case SCH_NODE_TYPE_ENC: return enc_done (sch, node.idx);
  2043. case SCH_NODE_TYPE_FILTER_IN: return filter_done(sch, node.idx);
  2044. default: av_assert0(0);
  2045. }
  2046. }
  2047. static void *task_wrapper(void *arg)
  2048. {
  2049. SchTask *task = arg;
  2050. Scheduler *sch = task->parent;
  2051. int ret;
  2052. int err = 0;
  2053. ret = task->func(task->func_arg);
  2054. if (ret < 0)
  2055. av_log(task->func_arg, AV_LOG_ERROR,
  2056. "Task finished with error code: %d (%s)\n", ret, av_err2str(ret));
  2057. err = task_cleanup(sch, task->node);
  2058. ret = err_merge(ret, err);
  2059. // EOF is considered normal termination
  2060. if (ret == AVERROR_EOF)
  2061. ret = 0;
  2062. if (ret < 0) {
  2063. pthread_mutex_lock(&sch->finish_lock);
  2064. sch->task_failed = 1;
  2065. pthread_cond_signal(&sch->finish_cond);
  2066. pthread_mutex_unlock(&sch->finish_lock);
  2067. }
  2068. av_log(task->func_arg, ret < 0 ? AV_LOG_ERROR : AV_LOG_VERBOSE,
  2069. "Terminating thread with return code %d (%s)\n", ret,
  2070. ret < 0 ? av_err2str(ret) : "success");
  2071. return (void*)(intptr_t)ret;
  2072. }
  2073. static int task_stop(Scheduler *sch, SchTask *task)
  2074. {
  2075. int ret;
  2076. void *thread_ret;
  2077. if (!task->parent)
  2078. return 0;
  2079. if (!task->thread_running)
  2080. return task_cleanup(sch, task->node);
  2081. ret = pthread_join(task->thread, &thread_ret);
  2082. av_assert0(ret == 0);
  2083. task->thread_running = 0;
  2084. return (intptr_t)thread_ret;
  2085. }
  2086. int sch_stop(Scheduler *sch, int64_t *finish_ts)
  2087. {
  2088. int ret = 0, err;
  2089. if (sch->state != SCH_STATE_STARTED)
  2090. return 0;
  2091. atomic_store(&sch->terminate, 1);
  2092. for (unsigned type = 0; type < 2; type++)
  2093. for (unsigned i = 0; i < (type ? sch->nb_demux : sch->nb_filters); i++) {
  2094. SchWaiter *w = type ? &sch->demux[i].waiter : &sch->filters[i].waiter;
  2095. waiter_set(w, 1);
  2096. if (type)
  2097. choke_demux(sch, i, 0); // unfreeze to allow draining
  2098. }
  2099. for (unsigned i = 0; i < sch->nb_demux; i++) {
  2100. SchDemux *d = &sch->demux[i];
  2101. err = task_stop(sch, &d->task);
  2102. ret = err_merge(ret, err);
  2103. }
  2104. for (unsigned i = 0; i < sch->nb_dec; i++) {
  2105. SchDec *dec = &sch->dec[i];
  2106. err = task_stop(sch, &dec->task);
  2107. ret = err_merge(ret, err);
  2108. }
  2109. for (unsigned i = 0; i < sch->nb_filters; i++) {
  2110. SchFilterGraph *fg = &sch->filters[i];
  2111. err = task_stop(sch, &fg->task);
  2112. ret = err_merge(ret, err);
  2113. }
  2114. for (unsigned i = 0; i < sch->nb_enc; i++) {
  2115. SchEnc *enc = &sch->enc[i];
  2116. err = task_stop(sch, &enc->task);
  2117. ret = err_merge(ret, err);
  2118. }
  2119. for (unsigned i = 0; i < sch->nb_mux; i++) {
  2120. SchMux *mux = &sch->mux[i];
  2121. err = task_stop(sch, &mux->task);
  2122. ret = err_merge(ret, err);
  2123. }
  2124. if (finish_ts)
  2125. *finish_ts = trailing_dts(sch, 1);
  2126. sch->state = SCH_STATE_STOPPED;
  2127. return ret;
  2128. }