/** * Copyright (C) 2025 Niklas Haas * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with FFmpeg; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include "libavutil/avassert.h" #include "libavutil/mem_internal.h" #include "libavutil/refstruct.h" #include "libswscale/ops.h" #include "libswscale/ops_internal.h" #include "checkasm.h" enum { LINES = 2, NB_PLANES = 4, PIXELS = 64, }; enum { U8 = SWS_PIXEL_U8, U16 = SWS_PIXEL_U16, U32 = SWS_PIXEL_U32, F32 = SWS_PIXEL_F32, }; #define FMT(fmt, ...) tprintf((char[256]) {0}, 256, fmt, __VA_ARGS__) static const char *tprintf(char buf[], size_t size, const char *fmt, ...) { va_list ap; va_start(ap, fmt); vsnprintf(buf, size, fmt, ap); va_end(ap); return buf; } static int rw_pixel_bits(const SwsOp *op) { const int elems = op->rw.packed ? op->rw.elems : 1; const int size = ff_sws_pixel_type_size(op->type); const int bits = 8 >> op->rw.frac; av_assert1(bits >= 1); return elems * size * bits; } static float rndf(void) { union { uint32_t u; float f; } x; do { x.u = rnd(); } while (!isnormal(x.f)); return x.f; } static void fill32f(float *line, int num, unsigned range) { const float scale = (float) range / UINT32_MAX; for (int i = 0; i < num; i++) line[i] = range ? scale * rnd() : rndf(); } static void fill32(uint32_t *line, int num, unsigned range) { for (int i = 0; i < num; i++) line[i] = (range && range < UINT_MAX) ? rnd() % (range + 1) : rnd(); } static void fill16(uint16_t *line, int num, unsigned range) { if (!range) { fill32((uint32_t *) line, AV_CEIL_RSHIFT(num, 1), 0); } else { for (int i = 0; i < num; i++) line[i] = rnd() % (range + 1); } } static void fill8(uint8_t *line, int num, unsigned range) { if (!range) { fill32((uint32_t *) line, AV_CEIL_RSHIFT(num, 2), 0); } else { for (int i = 0; i < num; i++) line[i] = rnd() % (range + 1); } } static void check_ops(const char *report, const unsigned ranges[NB_PLANES], const SwsOp *ops) { SwsContext *ctx = sws_alloc_context(); SwsCompiledOp comp_ref = {0}, comp_new = {0}; const SwsOpBackend *backend_new = NULL; SwsOpList oplist = { .ops = (SwsOp *) ops }; const SwsOp *read_op, *write_op; static const unsigned def_ranges[4] = {0}; if (!ranges) ranges = def_ranges; declare_func(void, const SwsOpExec *, const void *, int bx, int y, int bx_end, int y_end); DECLARE_ALIGNED_64(char, src0)[NB_PLANES][LINES][PIXELS * sizeof(uint32_t[4])]; DECLARE_ALIGNED_64(char, src1)[NB_PLANES][LINES][PIXELS * sizeof(uint32_t[4])]; DECLARE_ALIGNED_64(char, dst0)[NB_PLANES][LINES][PIXELS * sizeof(uint32_t[4])]; DECLARE_ALIGNED_64(char, dst1)[NB_PLANES][LINES][PIXELS * sizeof(uint32_t[4])]; if (!ctx) return; ctx->flags = SWS_BITEXACT; read_op = &ops[0]; for (oplist.num_ops = 0; ops[oplist.num_ops].op; oplist.num_ops++) write_op = &ops[oplist.num_ops]; const int read_size = PIXELS * rw_pixel_bits(read_op) >> 3; const int write_size = PIXELS * rw_pixel_bits(write_op) >> 3; for (int p = 0; p < NB_PLANES; p++) { void *plane = src0[p]; switch (read_op->type) { case U8: fill8(plane, sizeof(src0[p]) / sizeof(uint8_t), ranges[p]); break; case U16: fill16(plane, sizeof(src0[p]) / sizeof(uint16_t), ranges[p]); break; case U32: fill32(plane, sizeof(src0[p]) / sizeof(uint32_t), ranges[p]); break; case F32: fill32f(plane, sizeof(src0[p]) / sizeof(uint32_t), ranges[p]); break; } } memcpy(src1, src0, sizeof(src0)); memset(dst0, 0, sizeof(dst0)); memset(dst1, 0, sizeof(dst1)); /* Compile `ops` using both the asm and c backends */ for (int n = 0; ff_sws_op_backends[n]; n++) { const SwsOpBackend *backend = ff_sws_op_backends[n]; const bool is_ref = !strcmp(backend->name, "c"); if (is_ref || !comp_new.func) { SwsCompiledOp comp; int ret = ff_sws_ops_compile_backend(ctx, backend, &oplist, &comp); if (ret == AVERROR(ENOTSUP)) continue; else if (ret < 0) fail(); else if (PIXELS % comp.block_size != 0) fail(); if (is_ref) comp_ref = comp; if (!comp_new.func) { comp_new = comp; backend_new = backend; } } } av_assert0(comp_ref.func && comp_new.func); SwsOpExec exec = {0}; exec.width = PIXELS; exec.height = exec.slice_h = 1; for (int i = 0; i < NB_PLANES; i++) { exec.in_stride[i] = sizeof(src0[i][0]); exec.out_stride[i] = sizeof(dst0[i][0]); exec.in_bump[i] = exec.in_stride[i] - read_size; exec.out_bump[i] = exec.out_stride[i] - write_size; } /** * Don't use check_func() because the actual function pointer may be a * wrapper shared by multiple implementations. Instead, take a hash of both * the backend pointer and the active CPU flags. */ uintptr_t id = (uintptr_t) backend_new; id ^= (id << 6) + (id >> 2) + 0x9e3779b97f4a7c15 + comp_new.cpu_flags; checkasm_save_context(); if (checkasm_check_func((void *) id, "%s", report)) { func_new = comp_new.func; func_ref = comp_ref.func; exec.block_size_in = comp_ref.block_size * rw_pixel_bits(read_op) >> 3; exec.block_size_out = comp_ref.block_size * rw_pixel_bits(write_op) >> 3; for (int i = 0; i < NB_PLANES; i++) { exec.in[i] = (void *) src0[i]; exec.out[i] = (void *) dst0[i]; } call_ref(&exec, comp_ref.priv, 0, 0, PIXELS / comp_ref.block_size, LINES); exec.block_size_in = comp_new.block_size * rw_pixel_bits(read_op) >> 3; exec.block_size_out = comp_new.block_size * rw_pixel_bits(write_op) >> 3; for (int i = 0; i < NB_PLANES; i++) { exec.in[i] = (void *) src1[i]; exec.out[i] = (void *) dst1[i]; } call_new(&exec, comp_new.priv, 0, 0, PIXELS / comp_new.block_size, LINES); for (int i = 0; i < NB_PLANES; i++) { const char *name = FMT("%s[%d]", report, i); const int stride = sizeof(dst0[i][0]); switch (write_op->type) { case U8: checkasm_check(uint8_t, (void *) dst0[i], stride, (void *) dst1[i], stride, write_size, LINES, name); break; case U16: checkasm_check(uint16_t, (void *) dst0[i], stride, (void *) dst1[i], stride, write_size >> 1, LINES, name); break; case U32: checkasm_check(uint32_t, (void *) dst0[i], stride, (void *) dst1[i], stride, write_size >> 2, LINES, name); break; case F32: checkasm_check(float_ulp, (void *) dst0[i], stride, (void *) dst1[i], stride, write_size >> 2, LINES, name, 0); break; } if (write_op->rw.packed) break; } bench_new(&exec, comp_new.priv, 0, 0, PIXELS / comp_new.block_size, LINES); } if (comp_new.func != comp_ref.func && comp_new.free) comp_new.free(comp_new.priv); if (comp_ref.free) comp_ref.free(comp_ref.priv); sws_free_context(&ctx); } #define CHECK_RANGES(NAME, RANGES, N_IN, N_OUT, IN, OUT, ...) \ do { \ check_ops(NAME, RANGES, (SwsOp[]) { \ { \ .op = SWS_OP_READ, \ .type = IN, \ .rw.elems = N_IN, \ }, \ __VA_ARGS__, \ { \ .op = SWS_OP_WRITE, \ .type = OUT, \ .rw.elems = N_OUT, \ }, {0} \ }); \ } while (0) #define MK_RANGES(R) ((const unsigned[]) { R, R, R, R }) #define CHECK_RANGE(NAME, RANGE, N_IN, N_OUT, IN, OUT, ...) \ CHECK_RANGES(NAME, MK_RANGES(RANGE), N_IN, N_OUT, IN, OUT, __VA_ARGS__) #define CHECK_COMMON_RANGE(NAME, RANGE, IN, OUT, ...) \ CHECK_RANGE(FMT("%s_p1000", NAME), RANGE, 1, 1, IN, OUT, __VA_ARGS__); \ CHECK_RANGE(FMT("%s_p1110", NAME), RANGE, 3, 3, IN, OUT, __VA_ARGS__); \ CHECK_RANGE(FMT("%s_p1111", NAME), RANGE, 4, 4, IN, OUT, __VA_ARGS__); \ CHECK_RANGE(FMT("%s_p1001", NAME), RANGE, 4, 2, IN, OUT, __VA_ARGS__, { \ .op = SWS_OP_SWIZZLE, \ .type = OUT, \ .swizzle = SWS_SWIZZLE(0, 3, 1, 2), \ }) #define CHECK(NAME, N_IN, N_OUT, IN, OUT, ...) \ CHECK_RANGE(NAME, 0, N_IN, N_OUT, IN, OUT, __VA_ARGS__) #define CHECK_COMMON(NAME, IN, OUT, ...) \ CHECK_COMMON_RANGE(NAME, 0, IN, OUT, __VA_ARGS__) static void check_read_write(void) { for (SwsPixelType t = U8; t < SWS_PIXEL_TYPE_NB; t++) { const char *type = ff_sws_pixel_type_name(t); for (int i = 1; i <= 4; i++) { /* Test N->N planar read/write */ for (int o = 1; o <= i; o++) { check_ops(FMT("rw_%d_%d_%s", i, o, type), NULL, (SwsOp[]) { { .op = SWS_OP_READ, .type = t, .rw.elems = i, }, { .op = SWS_OP_WRITE, .type = t, .rw.elems = o, }, {0} }); } /* Test packed read/write */ if (i == 1) continue; check_ops(FMT("read_packed%d_%s", i, type), NULL, (SwsOp[]) { { .op = SWS_OP_READ, .type = t, .rw.elems = i, .rw.packed = true, }, { .op = SWS_OP_WRITE, .type = t, .rw.elems = i, }, {0} }); check_ops(FMT("write_packed%d_%s", i, type), NULL, (SwsOp[]) { { .op = SWS_OP_READ, .type = t, .rw.elems = i, }, { .op = SWS_OP_WRITE, .type = t, .rw.elems = i, .rw.packed = true, }, {0} }); } } /* Test fractional reads/writes */ for (int frac = 1; frac <= 3; frac++) { const int bits = 8 >> frac; const int range = (1 << bits) - 1; if (bits == 2) continue; /* no 2 bit packed formats currently exist */ check_ops(FMT("read_frac%d", frac), NULL, (SwsOp[]) { { .op = SWS_OP_READ, .type = U8, .rw.elems = 1, .rw.frac = frac, }, { .op = SWS_OP_WRITE, .type = U8, .rw.elems = 1, }, {0} }); check_ops(FMT("write_frac%d", frac), MK_RANGES(range), (SwsOp[]) { { .op = SWS_OP_READ, .type = U8, .rw.elems = 1, }, { .op = SWS_OP_WRITE, .type = U8, .rw.elems = 1, .rw.frac = frac, }, {0} }); } } static void check_swap_bytes(void) { CHECK_COMMON("swap_bytes_16", U16, U16, { .op = SWS_OP_SWAP_BYTES, .type = U16, }); CHECK_COMMON("swap_bytes_32", U32, U32, { .op = SWS_OP_SWAP_BYTES, .type = U32, }); } static void check_pack_unpack(void) { const struct { SwsPixelType type; SwsPackOp op; } patterns[] = { { U8, {{ 3, 3, 2 }}}, { U8, {{ 2, 3, 3 }}}, { U8, {{ 1, 2, 1 }}}, {U16, {{ 5, 6, 5 }}}, {U16, {{ 5, 5, 5 }}}, {U16, {{ 4, 4, 4 }}}, {U32, {{ 2, 10, 10, 10 }}}, {U32, {{10, 10, 10, 2 }}}, }; for (int i = 0; i < FF_ARRAY_ELEMS(patterns); i++) { const SwsPixelType type = patterns[i].type; const SwsPackOp pack = patterns[i].op; const int num = pack.pattern[3] ? 4 : 3; const char *pat = FMT("%d%d%d%d", pack.pattern[0], pack.pattern[1], pack.pattern[2], pack.pattern[3]); const int total = pack.pattern[0] + pack.pattern[1] + pack.pattern[2] + pack.pattern[3]; const unsigned ranges[4] = { (1 << pack.pattern[0]) - 1, (1 << pack.pattern[1]) - 1, (1 << pack.pattern[2]) - 1, (1 << pack.pattern[3]) - 1, }; CHECK_RANGES(FMT("pack_%s", pat), ranges, num, 1, type, type, { .op = SWS_OP_PACK, .type = type, .pack = pack, }); CHECK_RANGE(FMT("unpack_%s", pat), UINT32_MAX >> (32 - total), 1, num, type, type, { .op = SWS_OP_UNPACK, .type = type, .pack = pack, }); } } static AVRational rndq(SwsPixelType t) { const unsigned num = rnd(); if (ff_sws_pixel_type_is_int(t)) { const unsigned mask = UINT_MAX >> (32 - ff_sws_pixel_type_size(t) * 8); return (AVRational) { num & mask, 1 }; } else { const unsigned den = rnd(); return (AVRational) { num, den ? den : 1 }; } } static void check_clear(void) { for (SwsPixelType t = U8; t < SWS_PIXEL_TYPE_NB; t++) { const char *type = ff_sws_pixel_type_name(t); const int bits = ff_sws_pixel_type_size(t) * 8; /* TODO: AVRational can't fit 32 bit constants */ if (bits < 32) { const AVRational chroma = (AVRational) { 1 << (bits - 1), 1}; const AVRational alpha = (AVRational) { (1 << bits) - 1, 1}; const AVRational zero = (AVRational) { 0, 1}; const AVRational none = {0}; const SwsConst patterns[] = { /* Zero only */ {.q4 = { none, none, none, zero }}, {.q4 = { zero, none, none, none }}, /* Alpha only */ {.q4 = { none, none, none, alpha }}, {.q4 = { alpha, none, none, none }}, /* Chroma only */ {.q4 = { chroma, chroma, none, none }}, {.q4 = { none, chroma, chroma, none }}, {.q4 = { none, none, chroma, chroma }}, {.q4 = { chroma, none, chroma, none }}, {.q4 = { none, chroma, none, chroma }}, /* Alpha+chroma */ {.q4 = { chroma, chroma, none, alpha }}, {.q4 = { none, chroma, chroma, alpha }}, {.q4 = { alpha, none, chroma, chroma }}, {.q4 = { chroma, none, chroma, alpha }}, {.q4 = { alpha, chroma, none, chroma }}, /* Random values */ {.q4 = { none, rndq(t), rndq(t), rndq(t) }}, {.q4 = { none, rndq(t), rndq(t), rndq(t) }}, {.q4 = { none, rndq(t), rndq(t), rndq(t) }}, {.q4 = { none, rndq(t), rndq(t), rndq(t) }}, }; for (int i = 0; i < FF_ARRAY_ELEMS(patterns); i++) { CHECK(FMT("clear_pattern_%s[%d]", type, i), 4, 4, t, t, { .op = SWS_OP_CLEAR, .type = t, .c = patterns[i], }); } } else if (!ff_sws_pixel_type_is_int(t)) { /* Floating point YUV doesn't exist, only alpha needs to be cleared */ CHECK(FMT("clear_alpha_%s", type), 4, 4, t, t, { .op = SWS_OP_CLEAR, .type = t, .c.q4[3] = { 0, 1 }, }); } } } static void check_shift(void) { for (SwsPixelType t = U16; t < SWS_PIXEL_TYPE_NB; t++) { const char *type = ff_sws_pixel_type_name(t); if (!ff_sws_pixel_type_is_int(t)) continue; for (int shift = 1; shift <= 8; shift++) { CHECK_COMMON(FMT("lshift%d_%s", shift, type), t, t, { .op = SWS_OP_LSHIFT, .type = t, .c.u = shift, }); CHECK_COMMON(FMT("rshift%d_%s", shift, type), t, t, { .op = SWS_OP_RSHIFT, .type = t, .c.u = shift, }); } } } static void check_swizzle(void) { for (SwsPixelType t = U8; t < SWS_PIXEL_TYPE_NB; t++) { const char *type = ff_sws_pixel_type_name(t); static const int patterns[][4] = { /* Pure swizzle */ {3, 0, 1, 2}, {3, 0, 2, 1}, {2, 1, 0, 3}, {3, 2, 1, 0}, {3, 1, 0, 2}, {3, 2, 0, 1}, {1, 2, 0, 3}, {1, 0, 2, 3}, {2, 0, 1, 3}, {2, 3, 1, 0}, {2, 1, 3, 0}, {1, 2, 3, 0}, {1, 3, 2, 0}, {0, 2, 1, 3}, {0, 2, 3, 1}, {0, 3, 1, 2}, {3, 1, 2, 0}, {0, 3, 2, 1}, /* Luma expansion */ {0, 0, 0, 3}, {3, 0, 0, 0}, {0, 0, 0, 1}, {1, 0, 0, 0}, }; for (int i = 0; i < FF_ARRAY_ELEMS(patterns); i++) { const int x = patterns[i][0], y = patterns[i][1], z = patterns[i][2], w = patterns[i][3]; CHECK(FMT("swizzle_%d%d%d%d_%s", x, y, z, w, type), 4, 4, t, t, { .op = SWS_OP_SWIZZLE, .type = t, .swizzle = SWS_SWIZZLE(x, y, z, w), }); } } } static void check_convert(void) { for (SwsPixelType i = U8; i < SWS_PIXEL_TYPE_NB; i++) { const char *itype = ff_sws_pixel_type_name(i); const int isize = ff_sws_pixel_type_size(i); for (SwsPixelType o = U8; o < SWS_PIXEL_TYPE_NB; o++) { const char *otype = ff_sws_pixel_type_name(o); const int osize = ff_sws_pixel_type_size(o); const char *name = FMT("convert_%s_%s", itype, otype); if (i == o) continue; if (isize < osize || !ff_sws_pixel_type_is_int(o)) { CHECK_COMMON(name, i, o, { .op = SWS_OP_CONVERT, .type = i, .convert.to = o, }); } else if (isize > osize || !ff_sws_pixel_type_is_int(i)) { uint32_t range = UINT32_MAX >> (32 - osize * 8); CHECK_COMMON_RANGE(name, range, i, o, { .op = SWS_OP_CONVERT, .type = i, .convert.to = o, }); } } } /* Check expanding conversions */ CHECK_COMMON("expand16", U8, U16, { .op = SWS_OP_CONVERT, .type = U8, .convert.to = U16, .convert.expand = true, }); CHECK_COMMON("expand32", U8, U32, { .op = SWS_OP_CONVERT, .type = U8, .convert.to = U32, .convert.expand = true, }); } static void check_dither(void) { for (SwsPixelType t = F32; t < SWS_PIXEL_TYPE_NB; t++) { const char *type = ff_sws_pixel_type_name(t); if (ff_sws_pixel_type_is_int(t)) continue; /* Test all sizes up to 256x256 */ for (int size_log2 = 0; size_log2 <= 8; size_log2++) { const int size = 1 << size_log2; AVRational *matrix = av_refstruct_allocz(size * size * sizeof(*matrix)); if (!matrix) { fail(); return; } if (size == 1) { matrix[0] = (AVRational) { 1, 2 }; } else { for (int i = 0; i < size * size; i++) matrix[i] = rndq(t); } CHECK_COMMON(FMT("dither_%dx%d_%s", size, size, type), t, t, { .op = SWS_OP_DITHER, .type = t, .dither.size_log2 = size_log2, .dither.matrix = matrix, }); av_refstruct_unref(&matrix); } } } static void check_min_max(void) { for (SwsPixelType t = U8; t < SWS_PIXEL_TYPE_NB; t++) { const char *type = ff_sws_pixel_type_name(t); CHECK_COMMON(FMT("min_%s", type), t, t, { .op = SWS_OP_MIN, .type = t, .c.q4 = { rndq(t), rndq(t), rndq(t), rndq(t) }, }); CHECK_COMMON(FMT("max_%s", type), t, t, { .op = SWS_OP_MAX, .type = t, .c.q4 = { rndq(t), rndq(t), rndq(t), rndq(t) }, }); } } static void check_linear(void) { static const struct { const char *name; uint32_t mask; } patterns[] = { { "noop", 0 }, { "luma", SWS_MASK_LUMA }, { "alpha", SWS_MASK_ALPHA }, { "luma+alpha", SWS_MASK_LUMA | SWS_MASK_ALPHA }, { "dot3", 0x7 }, { "dot4", 0xF }, { "row0", SWS_MASK_ROW(0) }, { "row0+alpha", SWS_MASK_ROW(0) | SWS_MASK_ALPHA }, { "off3", SWS_MASK_OFF3 }, { "off3+alpha", SWS_MASK_OFF3 | SWS_MASK_ALPHA }, { "diag3", SWS_MASK_DIAG3 }, { "diag4", SWS_MASK_DIAG4 }, { "diag3+alpha", SWS_MASK_DIAG3 | SWS_MASK_ALPHA }, { "diag3+off3", SWS_MASK_DIAG3 | SWS_MASK_OFF3 }, { "diag3+off3+alpha", SWS_MASK_DIAG3 | SWS_MASK_OFF3 | SWS_MASK_ALPHA }, { "diag4+off4", SWS_MASK_DIAG4 | SWS_MASK_OFF4 }, { "matrix3", SWS_MASK_MAT3 }, { "matrix3+off3", SWS_MASK_MAT3 | SWS_MASK_OFF3 }, { "matrix3+off3+alpha", SWS_MASK_MAT3 | SWS_MASK_OFF3 | SWS_MASK_ALPHA }, { "matrix4", SWS_MASK_MAT4 }, { "matrix4+off4", SWS_MASK_MAT4 | SWS_MASK_OFF4 }, }; for (SwsPixelType t = F32; t < SWS_PIXEL_TYPE_NB; t++) { const char *type = ff_sws_pixel_type_name(t); if (ff_sws_pixel_type_is_int(t)) continue; for (int p = 0; p < FF_ARRAY_ELEMS(patterns); p++) { const uint32_t mask = patterns[p].mask; SwsLinearOp lin = { .mask = mask }; for (int i = 0; i < 4; i++) { for (int j = 0; j < 5; j++) { if (mask & SWS_MASK(i, j)) { lin.m[i][j] = rndq(t); } else { lin.m[i][j] = (AVRational) { i == j, 1 }; } } } CHECK(FMT("linear_%s_%s", patterns[p].name, type), 4, 4, t, t, { .op = SWS_OP_LINEAR, .type = t, .lin = lin, }); } } } static void check_scale(void) { for (SwsPixelType t = F32; t < SWS_PIXEL_TYPE_NB; t++) { const char *type = ff_sws_pixel_type_name(t); const int bits = ff_sws_pixel_type_size(t) * 8; if (ff_sws_pixel_type_is_int(t)) { /* Ensure the result won't exceed the value range */ const unsigned max = (1 << bits) - 1; const unsigned scale = rnd() & max; const unsigned range = max / (scale ? scale : 1); CHECK_COMMON_RANGE(FMT("scale_%s", type), range, t, t, { .op = SWS_OP_SCALE, .type = t, .c.q = { scale, 1 }, }); } else { CHECK_COMMON(FMT("scale_%s", type), t, t, { .op = SWS_OP_SCALE, .type = t, .c.q = rndq(t), }); } } } void checkasm_check_sw_ops(void) { check_read_write(); report("read_write"); check_swap_bytes(); report("swap_bytes"); check_pack_unpack(); report("pack_unpack"); check_clear(); report("clear"); check_shift(); report("shift"); check_swizzle(); report("swizzle"); check_convert(); report("convert"); check_dither(); report("dither"); check_min_max(); report("min_max"); check_linear(); report("linear"); check_scale(); report("scale"); }