
Solana -
token-2022

Solana Program Security
Assessment

Prepared by: Halborn

Date of Engagement: January 10th, 2024 - March 8th, 2024

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 ASSESSMENT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 7

2 RISK METHODOLOGY 8

2.1 EXPLOITABILITY 9

2.2 IMPACT 10

2.3 SEVERITY COEFFICIENT 12

2.4 SCOPE 14

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 15

4 FINDINGS & TECH DETAILS 16

4.1 (HAL-01) INFLATING SUPPLY ON CONFIDENTIAL TRANSFERS - CRITI-

CAL(10) 18

Description 18

Code Location 19

Proof of Concept 20

BVSS 20

Recommendation 20

Remediation Plan 20

4.2 (HAL-02) INFLATING SUPPLY ON ENCRYPTED BALANCE WITHDRAW - CRIT-

ICAL(10) 21

Description 21

Code Location 22

1

BVSS 23

Recommendation 23

Remediation Plan 23

4.3 (HAL-03) SILENT TOKEN BURN ON EMPTY ACCOUNT - MEDIUM(6.7) 24

Description 24

Code Location 25

BVSS 25

Recommendation 25

Remediation Plan 25

4.4 (HAL-04) MINT ADDRESS VERIFICATION MISSING ON APPROVE -

MEDIUM(6.2) 26

Description 26

BVSS 26

Recommendation 26

Remediation Plan 26

4.5 (HAL-05) INCORRECT ACCOUNT ORDER - MEDIUM(5.0) 27

Description 27

Code Location 28

BVSS 30

Recommendation 30

Remediation Plan 30

4.6 (HAL-06) CONFIDENTIAL TRANSFER AMOUNTS INFO LEAK VIA TRANSFER

FEES - MEDIUM(5.0) 31

Description 31

BVSS 31

Recommendation 31

Remediation Plan 31

2

4.7 (HAL-07) UNCONSTRAINED CONFIDENTIAL TRANSFER FEE WITHDRAW -

LOW(2.5) 32

Description 32

BVSS 32

Recommendation 32

Remediation Plan 33

4.8 (HAL-08) MULTISG SIGNERS NOT REFERENCED CORRECTLY BY THE IN-

STRUCTION BUILDER - INFORMATIONAL(0.0) 34

Description 34

Code Location 34

BVSS 35

Recommendation 35

Remediation Plan 35

4.9 AUTOMATED ANALYSIS 36

Description 36

Results 36

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE

0.1 Document Creation 03/11/2024

0.2 Draft Version 03/11/2024

1.0 Remediation Plan 03/11/2024

1.1 Remediation Plan Review 03/11/2024

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

spl-token-2022 aka Token extensions (TE) is a new token program on the

Solana blockchain that enables a set of modular extensions for token

issuers. These extensions are built into the core protocol level of

Solana and apply to both fungible and non-fungible tokens.

With token extensions, developers can now use a set of more than a

dozen proven, audited extensions, that quickly add the needed advanced

functionality to their tokens, such as the privacy-preserving technology

of confidential transfers, new compliance frameworks such as transfer

hooks, and the ability to charge fees on transfers.

Halborn conducted a security assessment on a set of changes to the program

made between two different commits, beginning on January 10th, 2024 and

ending on March 8th, 2024 . The security assessment was scoped to the

updates to the master branch of the spl-token-2022 GitHub repository.

Commit hashes and further details can be found in the Scope section of

this report.

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided 7 weeks for the engagement and assigned

1 full-time security engineer to review the security of the programs

in scope. The security engineer is a blockchain and Solana Program

security expert with advanced penetration testing and Solana Program

hacking skills, and deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to identify potential security issues

within the programs.

In summary, Halborn did not identify any new significant issues in the

code in scope. All reported issues have already been fixed by the Solana

team and were included in the report for the sake of continuity of the

audit commit history.

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana-program-library/tree/master/token/program-2022

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of a manual review of the source code

and automated security testing to balance efficiency, timeliness, prac-

ticality, and accuracy in regard to the scope of the program assessment.

While manual testing is recommended to uncover flaws in business logic,

processes, and implementation; automated testing techniques help enhance

coverage of programs and can quickly identify items that do not follow

security best practices.

The following phases and associated tools were used throughout the term

of the assessment:

• Research into the architecture, purpose, and use of the platform.

• Manual program source code review to identify business logic issues.

• Mapping out possible attack vectors

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic vulnerabilities.

• Scanning dependencies for known vulnerabilities (cargo audit).

• Local runtime testing (solana-test-framework)

7

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

11

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

12

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

13

EX
EC

UT
IV

E
OV

ER
VI

EW

2.4 SCOPE

Code repositories:

1. Token Extensions

• Repository: spl-token-2022

• Commit Range:

• initial: 4587da1

• final: 56aaa67

• Programs in scope:

1. spl-token-2022 (token/program-2022)

Out-of-scope:

- third-party libraries and dependencies

- financial-related attacks

14

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana-program-library/blob/master/token/program-2022
https://github.com/solana-labs/solana-program-library/commit/4587da1eaba44425b872a8a7174409c4dca816a3
https://github.com/solana-labs/solana-program-library/commit/56aaa6732670824273414bb14bbea12c83a46829

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

2 0 4 1 1

15

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) INFLATING SUPPLY ON
CONFIDENTIAL TRANSFERS

Critical (10) SOLVED - 12/3/2022

(HAL-02) INFLATING SUPPLY ON
ENCRYPTED BALANCE WITHDRAW

Critical (10) SOLVED - 10/27/2022

(HAL-03) SILENT TOKEN BURN ON EMPTY
ACCOUNT

Medium (6.7) SOLVED - 10/27/2022

(HAL-04) MINT ADDRESS VERIFICATION
MISSING ON APPROVE

Medium (6.2) SOLVED - 11/29/2023

(HAL-05) INCORRECT ACCOUNT ORDER Medium (5.0) SOLVED - 12/2/2023

(HAL-06) CONFIDENTIAL TRANSFER
AMOUNTS INFO LEAK VIA TRANSFER FEES

Medium (5.0) SOLVED - 10/28/2022

(HAL-07) UNCONSTRAINED CONFIDENTIAL
TRANSFER FEE WITHDRAW

Low (2.5) SOLVED - 10/28/2022

(HAL-08) MULTISG SIGNERS NOT
REFERENCED CORRECTLY BY THE

INSTRUCTION BUILDER

Informational
(0.0)

SOLVED - 10/27/2022

16

EX
EC

UT
IV

E
OV

ER
VI

EW

17

FINDINGS & TECH
DETAILS

4.1 (HAL-01) INFLATING SUPPLY ON
CONFIDENTIAL TRANSFERS -
CRITICAL(10)

Description:

Transfers between confidential accounts necessitate a zero-knowledge (ZK)

proof that verifies two conditions: the source account has a balance

greater than the amount being transferred, and the amount being trans-

ferred is non-negative. These transactions are executed through two

distinct operations. The initial operation involves a ZK proof that

validates the legitimacy of the transfer without revealing any details

about the account balances or the amount transferred. The subsequent op-

eration handles the computational aspects and updates the account states

to finalize the transfer.

The verification of the ZK proof is carried out by a dedicated built-in

program, which checks the proof’s correctness. If the proof fails to

validate, the operation is aborted. Specifically, the ZK proof com-

prises an equation with variables representing the states of the accounts

participating in the transaction.

The execution of the second operation falls to the token program, which

ensures the presence and integrity of the ZK proof and its consistency with

the current account states, thus linking the proof to the blockchain’s

state.

However, the token program overlooks the full verification of the ZK proof

inputs. It neglects the new_source_ciphertext field within the ZK proof,

which is supposed to hold the encrypted balance of the source account

after the transaction. The omission of this check means the encrypted

balance of the source account is not verified, disconnecting the ZK proof

from the actual balance in the source account.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 1: solana-zk-token-sdk/src/instruction/transfer.rs (Line 55)

42 #[derive(Clone , Copy , Pod , Zeroable)]

43 #[repr(C)]

44 pub struct TransferData {

45 /// Group encryption of the low 32 bits of the transfer amount

46 pub ciphertext_lo: pod:: TransferAmountEncryption ,

47

48 /// Group encryption of the high 32 bits of the transfer

ë amount

49 pub ciphertext_hi: pod:: TransferAmountEncryption ,

50

51 /// The public encryption keys associated with the transfer:

ë source , dest , and auditor

52 pub transfer_pubkeys: pod:: TransferPubkeys ,

53

54 /// The final spendable ciphertext after the transfer

55 pub new_source_ciphertext: pod:: ElGamalCiphertext ,

56

57 /// Zero -knowledge proofs for Transfer

58 pub proof: TransferProof ,

59 }

Listing 2: src/extension/confidential_transfer/processor.rs

622 #[allow(clippy :: too_many_arguments)]

623 #[cfg(feature = "zk -ops")]

624 fn process_source_for_transfer(

625 program_id: &Pubkey ,

626 token_account_info: &AccountInfo ,

627 mint_info: &AccountInfo ,

628 authority_info: &AccountInfo ,

629 signers: &[AccountInfo],

630 source_encryption_pubkey: &EncryptionPubkey ,

631 source_ciphertext_lo: &EncryptedBalance ,

632 source_ciphertext_hi: &EncryptedBalance ,

633 new_source_decryptable_available_balance: DecryptableBalance ,

634) -> ProgramResult {

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

To exploit the described vulnerability, multiple transfers that cumula-

tively exceed the encrypted balance of the source account can be performed.

The vulnerability can be demonstrated through a proof-of-concept exploit

that involves a transaction with several instructions for transfers, all

linked to a single instruction that includes the ZK proof.

As a result of this exploit, the encrypted balance of the source account

underflows and fails silently, rendering it invalid, while the encrypted

pending balance of the destination account receives credits multiple

times. This anomaly effectively generates tokens from nothing, leading to

an increase in the token supply which is not reflected in the total_supply

of the mint account. Consequently, the destination account can integrate

the unjustly acquired balance and utilize it as if it was legitimately

obtained.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:C/Y:N/R:N/S:U (10)

Recommendation:

When transferring, ensure the encrypted balance of the source account

is aligned with the expected amount included in the ZK argument as

new_source_ciphertext.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit c7fbd4b.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana-program-library/commit/c7fbd4b69b5021e3fecee7ec439d6fba2950d235

4.2 (HAL-02) INFLATING SUPPLY ON
ENCRYPTED BALANCE WITHDRAW -
CRITICAL(10)

Description:

The transaction for a confidential withdrawal is divided into two parts:

one for verifying the ZK proof through a specialized built-in program

(which aborts the transaction if the proof is invalid), and another for

the SPL Token 2022 program to process the balance operations and execute

the withdrawal. The program checks for the presence of the ZK proof and

its inputs’ alignment with the account states, thereby linking the proof

to the blockchain’s current state.

However, the program fails to verify that the public key associated with

the ZK proof matches the public key of the source account’s encrypted

balance. This oversight allows an attacker to forge a ZK proof to

authorize any withdrawal amount, irrespective of the source account’s

actual encrypted balance.

By exploiting this flaw, an attacker could withdraw an unlimited amount of

tokens to their plaintext balance, effectively creating tokens from thin

air and causing inflation of the token supply. This inflation would not

be recorded in the mint account associated with the token. The inflated

plaintext balance becomes spendable like any legitimate account balance.

While full exploitability of this vulnerability has not been confirmed,

the Solana team acknowledges that forging a deceptive ZK proof is likely

feasible.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 3: (Line 90)

84 pub struct ConfidentialTransferAccount {

85 /// `true ` if this account has been approved for use. All

ë confidential transfer operations for

86 /// the account will fail until approval is granted.

87 pub approved: PodBool ,

88

89 /// The public key associated with ElGamal encryption

90 pub encryption_pubkey: EncryptionPubkey ,

91

92 /// The low 16 bits of the pending balance (encrypted by `

ë encryption_pubkey `)

93 pub pending_balance_lo: EncryptedBalance ,

94

95 /// The high 48 bits of the pending balance (encrypted by `

ë encryption_pubkey `)

96 pub pending_balance_hi: EncryptedBalance ,

97

98 /// The available balance (encrypted by `encrypiton_pubkey `)

99 pub available_balance: EncryptedBalance ,

100

101 /// The decryptable available balance

102 pub decryptable_available_balance: DecryptableBalance ,

103

104 /// `pending_balance ` may only be credited by `Deposit ` or `

ë Transfer ` instructions if `true `

105 pub allow_balance_credits: PodBool ,

106

107 /// The total number of `Deposit ` and `Transfer ` instructions

ë that have credited

108 /// `pending_balance `

109 pub pending_balance_credit_counter: PodU64 ,

110

111 /// The maximum number of `Deposit ` and `Transfer `

ë instructions that can credit

112 /// `pending_balance ` before the `ApplyPendingBalance `

ë instruction is executed

113 pub maximum_pending_balance_credit_counter: PodU64 ,

114

115 /// The `expected_pending_balance_credit_counter ` value that

ë was included in the last

116 /// `ApplyPendingBalance ` instruction

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

117 pub expected_pending_balance_credit_counter: PodU64 ,

118

119 /// The actual `pending_balance_credit_counter ` when the last

ë `ApplyPendingBalance ` instruction

120 /// was executed

121 pub actual_pending_balance_credit_counter: PodU64 ,

122

123 /// The withheld amount of fees. This will always be zero if

ë fees are never enabled.

124 pub withheld_amount: EncryptedWithheldAmount ,

125 }

Listing 4: asd (Line 36)

34 pub struct WithdrawData {

35 /// The source account ElGamal pubkey

36 pub pubkey: pod:: ElGamalPubkey , // 32 bytes

37

38 /// The source account available balance *after* the withdraw

ë (encrypted by

39 /// `source_pk `

40 pub final_ciphertext: pod:: ElGamalCiphertext , // 64 bytes

41

42 /// Range proof

43 pub proof: WithdrawProof , // 736 bytes

44 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:M/D:C/Y:N/R:N/S:U (10)

Recommendation:

Ensure to verify that ConfidentialTransferAccount.encryption_pubkey

matches WithdrawData.pubkey when processing withdraws.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit 94b912a.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana-program-library/commit/94b912a2b2d26462793e990a1168569c8cb1f3a6

4.3 (HAL-03) SILENT TOKEN BURN ON
EMPTY ACCOUNT - MEDIUM (6.7)

Description:

In the token-2022 program, an account holding tokens can only be closed

if its balance is zero, a rule that applies both to the plaintext balance

and to encrypted balances managed by the confidential transfer feature.

To close an account with encrypted balances, a specific instruction named

EmptyAccount must be executed. This instruction requires the verification

of a zero-knowledge (ZK) proof demonstrating that the account’s balance

is indeed zero.

As with other operations involving confidential tokens, the ZK proof must

be included within an instruction in the transaction that triggers the

EmptyAccount instruction handler. The handler verifies the existence of

the ZK proof and its correlation with the blockchain’s current state.

However, the verification process fails to ensure that the public key

linked to the ZK proof matches the public key of the token account

intended for closure. This oversight could enable an attacker to present

a fabricated ZK proof, erroneously indicating that the account balance

is zero, thereby permitting the closure of an account with a nonzero

balance.

Closing an account in this manner could lead to a reduction in the

circulating token supply without the corresponding supply tracker in the

mint account being updated. It is worth to note an attacker would forfeit

their balance by performing this action, making the practical incentive

for such an attack unclear.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 5: solana-zk-token-sdksrc/instruction/close_account.rs (Line

29)

27 pub struct CloseAccountData {

28 /// The source account ElGamal pubkey

29 pub pubkey: pod:: ElGamalPubkey , // 32 bytes

30

31 /// The source account available balance in encrypted form

32 pub ciphertext: pod:: ElGamalCiphertext , // 64 bytes

33

34 /// Proof that the source account available balance is zero

35 pub proof: CloseAccountProof , // 64 bytes

36 }

BVSS:

AO:A/AC:M/AX:L/C:N/I:N/A:N/D:C/Y:N/R:N/S:U (6.7)

Recommendation:

Ensure to verify that ConfidentialTransferAccount.encryption_pubkey

matches CloseAccountData.pubkey when processing account close.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit d6a72eb.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana-program-library/commit/d6a72ebfe42254d25c8072875510efbbf8b5312c

4.4 (HAL-04) MINT ADDRESS
VERIFICATION MISSING ON APPROVE -
MEDIUM (6.2)

Description:

The process_approve_account function is designed to prepare a token ac-

count for confidential transfers by authorizing its account authority.

However, it omits an essential verification step to ensure that the mint

associated with the token account corresponds to the mint intended for

the confidential transfer approval.

As a consequence, the system permits the approval of token accounts for

confidential transfers, even when those accounts belong to a different

mint than the one being authorized. Token accounts are expected to hold

tokens only from their associated mint. The absence of a check for mint

alignment allows for the approval of any token account for confidential

transfers, disregarding this principle.

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:M/D:N/Y:N/R:N/S:U (6.2)

Recommendation:

Modify the conditions in the process_transfer, verify_transfer_with_fee_proof

and verify_transfer_proof functions, and amend the ordering of accounts

in the transfer_with_split_proofs function such that the new condi-

tions accurately reflect the order of accounts as required by the

transfer_with_split_proofs instruction handler.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit b410945.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana-program-library/commit/b41094566e04c5b3e93f28cb92dd5d09ae9becc5

4.5 (HAL-05) INCORRECT ACCOUNT
ORDER - MEDIUM (5.0)

Description:

The transfer_with_split_proofs function in the token-2022 program com-

piles a sequence of seven AccountMetas to detail the accounts partic-

ipating in a transaction. The process_transfer instruction handler

iterates over these accounts, and the verify_transfer_proof function

iterates over the first three of the seven accounts required by the

transfer_with_split_proofs function.

When the no_op_on_split_proof_context_state flag is set to false and the

close_split_context_state_on_execution flag is set to true, the pro-

cess enters a conditional block where account_info_iter is supposed

to fetch the next account as lamport_destination_account_info for lam-

port transfers. However, due to the misalignment of account order,

source_account_authority is loaded instead of the intended lamport des-

tination. This account is a signer account.

As a result, when closing each split context state account, the sys-

tem mistakenly uses lamport_destination_account_info, now referencing

source_account_authority, as the recipient for lamport transfers. This

unintentionally directs lamports to the signing authority of the source

account, diverging from the expected behavior. A similar problem occurs

during transfers that involve fees.

Additionally, if the no_op_on_split_proof_context_state flag is

set to true and a required context state account is uninitial-

ized, calling the verify_transfer_proof function leads to a return

value of None. Should the close_split_context_state_on_execution

flag also be true under these conditions, the process_transfer

function attempts to reset lamport_destination, context_accounts.

authority, and zk_token_proof_program addresses, intending to load

source_account_authority into authority_info. However, due to the

account order error, source_account_authority, lamport_destination, and

context_accounts.authority are erroneously cleared, and authority_info

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

gets assigned to the zk_token_proof_program account.

This misalignment can cause failures in verifying the zero-knowledge

proof essential for confirming the transfer’s validity. Failure of the

proof or the verification process may lead to transaction errors and the

inability to complete the transfer.

Code Location:

Listing 6: src/extension/confidential_transfer/instruction.rs (Lines

1357,1368)

1331 let close_split_context_state_on_execution =

1332 if let Some(close_split_context_state_on_execution_accounts) =

1333 context_accounts.close_split_context_state_accounts

1334 {

1335 // If `close_split_context_state_accounts ` is set , then

ë all context state accounts must

1336 // be `writable `.

1337 accounts.push(AccountMeta ::new(* context_accounts.

ë equality_proof , false));

1338 accounts.push(AccountMeta ::new(

1339 *context_accounts.ciphertext_validity_proof ,

1340 false ,

1341));

1342 accounts.push(AccountMeta ::new(* context_accounts.

ë range_proof , false));

1343 accounts.push(AccountMeta :: new_readonly (*

ë source_account_authority , true));

1344 accounts.push(AccountMeta ::new(

1345 *close_split_context_state_on_execution_accounts.

ë lamport_destination ,

1346 false ,

1347));

1348 accounts.push(AccountMeta :: new_readonly (* context_accounts.

ë authority , true));

1349 accounts.push(AccountMeta :: new_readonly(

1350 *close_split_context_state_on_execution_accounts.

ë zk_token_proof_program ,

1351 false ,

1352));

1353 true

1354 } else {

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

1355 // If `close_split_context_state_accounts ` is not set ,

ë then context state accounts can

1356 // be read -only.

1357 accounts.push(AccountMeta :: new_readonly(

1358 *context_accounts.equality_proof ,

1359 false ,

1360));

1361 accounts.push(AccountMeta :: new_readonly(

1362 *context_accounts.ciphertext_validity_proof ,

1363 false ,

1364));

1365 accounts.push(AccountMeta :: new_readonly(

1366 *context_accounts.range_proof ,

1367 false ,

1368));

1369 accounts.push(AccountMeta :: new_readonly (*

ë source_account_authority , true));

1370

1371 false

1372 };

Listing 7: src/extension/confidential_transfer/verify_proof.rs (Line

187)

186 if close_split_context_state_on_execution {

187 let lamport_destination_account_info = next_account_info(

ë account_info_iter)?;

188 let context_state_account_authority_info = next_account_info(

ë account_info_iter)?;

189

190 msg!("Closing equality proof context state account");

191 invoke(

192 &zk_token_proof_instruction :: close_context_state(

193 ContextStateInfo {

194 context_state_account:

ë equality_proof_context_state_account_info.key ,

195 context_state_authority:

ë context_state_account_authority_info.key ,

196 },

197 lamport_destination_account_info.key ,

198),

199 &[

200 equality_proof_context_state_account_info.clone (),

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

201 lamport_destination_account_info.clone (),

202 context_state_account_authority_info.clone (),

203],

204)?;

Listing 8: src/extension/confidential_transfer/verify_proof.rs

145 if no_op_on_split_proof_context_state

146 && check_system_program_account(

ë equality_proof_context_state_account_info.owner).is_ok ()

147 {

148 msg!("Equality proof context state account not initialized

ë ");

149 return Ok(None);

150 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:N/S:U (5.0)

Recommendation:

Modify the conditions in the process_transfer, verify_transfer_with_fee_proof

and verify_transfer_proof functions, and amend the ordering of accounts

in the transfer_with_split_proofs function such that the new condi-

tions accurately reflect the order of accounts as required by the

transfer_with_split_proofs instruction handler.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit 5da184a.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana-program-library/commit/5da184aed56cda46b0006ebf3ea5d617ef0501a8

4.6 (HAL-06) CONFIDENTIAL TRANSFER
AMOUNTS INFO LEAK VIA TRANSFER
FEES - MEDIUM (5.0)

Description:

In the token-2022 program tokens can be set to incur a transfer fee,

which is a percentage of the transaction amount and may have a maximum fee

limit. This setup extends to confidential transfers, which utilize zero-

knowledge proofs to confirm the legitimacy of encrypted balance changes.

However, this mechanism inadvertently reveals information about every

transfer’s value to the individuals holding the transfer fee management

keys.

Owners of the keys responsible for fee management can discern the value

of confidential transfers by decrypting and comparing the fee balance

before and after each transfer. When the fee is below the maximum cap,

the precise transfer amount can be deduced. If the fee hits the cap, it

implies that the transfer amount was at least the minimum necessary to

incur the maximum fee.

BVSS:

AO:A/AC:L/AX:L/C:M/I:N/A:N/D:N/Y:N/R:N/S:U (5.0)

Recommendation:

Educate the program users on this limitation of the confidential transfer

feature.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit 1c3af5e.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana-program-library/commit/1c3af5e53d83392fca1a6823aec1bd8dbfd73d95

4.7 (HAL-07) UNCONSTRAINED
CONFIDENTIAL TRANSFER FEE
WITHDRAW - LOW (2.5)

Description:

The procedures for processing confidential transfer instruc-

tions, specifically WithdrawWithheldTokensFromAccounts and

WithdrawWithheldTokensFromMint, overlook certain limitations that should

apply to confidential token accounts. These oversights include not adher-

ing to an account’s setting that may block credits to its pending balance,

and failing to check or update the pending_balance_credit_counter,

which should not exceed maximum_pending_balance_credit_counter. These

functions directly transfer the full amount of withheld balance to the

pending_balance_lo of the recipient account, potentially exceeding the

decryptable limit of the balance.

An attacker with access to the fee management keys could manipulate the

encrypted pending balance of an account, overriding the account owner’s

settings and potentially rendering the balance not decryptable for the

victim.

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (2.5)

Recommendation:

Revert the transaction if allow_balance_credits is set on the

destination account or if pending_balance_credit_counter is

greater or equal maximum_pending_balance_credit_counter. Incre-

ment pending_balance_credit_counter after the transfer is executed.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: The Solana team solved this issue in commit 16384e2.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana-program-library/commit/16384e2f00ea27713c01456a6f96226401b0174f

4.8 (HAL-08) MULTISG SIGNERS NOT
REFERENCED CORRECTLY BY THE
INSTRUCTION BUILDER - INFORMATIONAL
(0.0)

Description:

This vulnerability affects the handling of multi-signature ac-

counts during the creation of withdrawal instructions for withheld

tokens in the confidential transfer fee feature, in both the

withdraw_withheld_tokens_from_mint and withdraw_withheld_tokens_from_accounts

handlers.

The issue arises from treating multi-signature accounts as non-signer ac-

counts by the instruction builder inner_withdraw_withheld_tokens_from_mint

and inner_withdraw_withheld_tokens_from_accounts functions. For

withdrawals, the builder should reference multi-signature participants

as signers, but it mistakenly categorizes them as non-signers. This

misclassification can cause transactions to fail, especially when

validating ownership in multi-signature accounts that necessitate

multiple signers.

Code Location:

Listing 9: src/extension/confidential_transfer_fee/instruction.rs

(Line 394)

388 accounts.push(AccountMeta :: new_readonly(

389 *authority ,

390 multisig_signers.is_empty (),

391));

392

393 for multisig_signer in multisig_signers.iter() {

394 accounts.push(AccountMeta ::new (** multisig_signer , false));

395 }

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Reference the multisig signers as signers when assembling the withdraw

fee instructions

Remediation Plan:

SOLVED: The Solana team solved this issue in commit d3de202.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana-program-library/commit/d3de20251f28954fbbfea717ab75ae5bce4bb7c6

4.9 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-audit, a security scanner for vulnerabilities reported to the Rust-

Sec Advisory Database. All vulnerabilities published in https://crates.io

are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs

a scanning on Cargo.lock. Security Detections are only in scope. All

vulnerabilities shown here were already disclosed in the above report.

However, to better assist the developers maintaining this code, the re-

viewers are including the output with the dependencies tree, and this

is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results:

ID package Short Description

RUSTSEC-2022-0093 ed25519-

dalek

Double Public Key Signing Function Oracle

Attack on ‘ed25519-dalek‘

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://rustsec.org/advisories/RUSTSEC-2022-0093

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	AUTOMATED ANALYSIS
	Description
	Results

