// HALBORN

Solana -
token-2022

Solana Program Security
Assessment

Prepared by: Halborn
Date of Engagement: January 10th, 2024 - March 8th, 2024

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY

CONTACTS

1

4.2

EXECUTIVE OVERVIEW
INTRODUCTION

ASSESSMENT SUMMARY

TEST APPROACH & METHODOLOGY
RISK METHODOLOGY
EXPLOITABILITY

IMPACT

SEVERITY COEFFICIENT

SCOPE

ASSESSMENT SUMMARY & FINDINGS OVERVIEW
FINDINGS & TECH DETAILS

(HAL-01) INFLATING SUPPLY ON CONFIDENTIAL TRANSFERS -

Description

Code Location
Proof of Concept
BVSS
Recommendation
Remediation Plan

(HAL-02) INFLATING SUPPLY ON ENCRYPTED BALANCE WITHDRAW -

Description

Code Location

10

12

14

15

16

18

18

19

20

20

20

20

21

21

22

4.3

4.4

4.5

4.6

BVSS 23
Recommendation 23
Remediation Plan 23

(HAL-0@3) SILENT TOKEN BURN ON EMPTY ACCOUNT - MEDIUM(6.7) 24

Description 24
Code Location 25
BVSS 25
Recommendation 25
Remediation Plan 25

(HAL-04) MINT ADDRESS VERIFICATION MISSING ON APPROVE -

MEDIUM(6.2) 26
Description 26
BVSS 26
Recommendation 26
Remediation Plan 26
(HAL-@5) INCORRECT ACCOUNT ORDER - MEDIUM(5.0) 27
Description 27
Code Location 28
BVSS 30
Recommendation 30
Remediation Plan 30

(HAL-06) CONFIDENTIAL TRANSFER AMOUNTS INFO LEAK VIA TRANSFER

FEES - MEDIUM(5.0) 31
Description 31
BVSS 31
Recommendation 31

Remediation Plan 31

4.7

4.8

4.9

(HAL-07) UNCONSTRAINED CONFIDENTIAL TRANSFER FEE WITHDRAW
LOW(2.5)

Description
BVSS
Recommendation

Remediation Plan

32

32

32

32

33

(HAL-08) MULTISG SIGNERS NOT REFERENCED CORRECTLY BY THE IN-

STRUCTION BUILDER - INFORMATIONAL (@.0)
Description

Code Location

BVSS
Recommendation
Remediation Plan
AUTOMATED ANALYSIS

Description

Results

34

34

34

35

35

35

36

36

36

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE
0.1 Document Creation 03/11/2024
0.2 Draft Version 03/11/2024
1.0 Remediation Plan 03/11/2024
1.1 Remediation Plan Review 03/11/2024

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

spl-token-2022 aka Token extensions (TE) is a new token program on the
Solana blockchain that enables a set of modular extensions for token
issuers. These extensions are built into the core protocol level of
Solana and apply to both fungible and non-fungible tokens.

With token extensions, developers can now use a set of more than a
dozen proven, audited extensions, that quickly add the needed advanced
functionality to their tokens, such as the privacy-preserving technology
of confidential transfers, new compliance frameworks such as transfer
hooks, and the ability to charge fees on transfers.

Halborn conducted a security assessment on a set of changes to the program
made between two different commits, beginning on January 10th, 2024 and
ending on March 8th, 2024 . The security assessment was scoped to the
updates to the master branch of the spl-token-2022 GitHub repository.
Commit hashes and further details can be found in the Scope section of
this report.

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided 7 weeks for the engagement and assigned
1 full-time security engineer to review the security of the programs
in scope. The security engineer is a blockchain and Solana Program
security expert with advanced penetration testing and Solana Program
hacking skills, and deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to identify potential security issues
within the programs.

In summary, Halborn did not identify any new significant issues in the
code in scope. All reported issues have already been fixed by the Solana
team and were included in the report for the sake of continuity of the
audit commit history.

https://github.com/solana-labs/solana-program-library/tree/master/token/program-2022

EXECUTIVE OVERVIEW

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of a manual review of the source code
and automated security testing to balance efficiency, timeliness, prac-
ticality, and accuracy in regard to the scope of the program assessment.
While manual testing is recommended to uncover flaws in business logic,
processes, and implementation; automated testing techniques help enhance
coverage of programs and can quickly identify items that do not follow
security best practices.

The following phases and associated tools were used throughout the term
of the assessment:

® Research into the architecture, purpose, and use of the platform.
®* Manual program source code review to identify business logic issues.
Mapping out possible attack vectors

®* Thorough assessment of safety and usage of critical Rust variables
and functions in scope that could lead to arithmetic vulnerabilities.

®* Scanning dependencies for known vulnerabilities (cargo audit).

® Local runtime testing (solana-test-framework)

EXECUTIVE OVERVIEW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two
sets of Metrics and a Severity Coefficient. This system is inspired by
the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability
captures the ease and technical means by which vulnerabilities can be
exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of
the ranking with two factors: Reversibility and Scope. These capture the
impact of the vulnerability on the environment as well as the number of
users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and
10 corresponding to the highest security risk. This provides an objective
and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-
nerabilities based on their level of risk to address the most critical
issues in a timely manner.

EXECUTIVE OVERVIEW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker
relative to sending a single transaction on the relevant blockchain.
Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in
order to exploit the vulnerability. Includes but is not limited to macro
situation, available third-party liquidity and regulatory challenges.

Metrics:
Exploitability Metric . :
Metric Value Numerical Value
(mg)
L Arbitrary (AO:A) 1
Attack Origin (AO) o
Specific (AO:S) 0.2
Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33
Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability /£ is calculated using the following formula:

E = n Me

EXECUTIVE OVERVIEW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources
managed by the contract due to a successfully exploited vulnerability.
Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-
ity. Integrity refers to the trustworthiness and veracity of data stored
and/or processed on-chain. Integrity impact directly affecting Deposit
or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-
sulting from a successfully exploited vulnerability. This metric refers
to smart contract features and functionality, not state. Availability
impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either
users or owners.

10

EXECUTIVE OVERVIEW

Metrics:

Impact Metric

Metric Value

Numerical Value

(mp)

None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

None (I:N) 0
Low (I:L) 0.25
Integrity (I) Medium (I:M) 0.5
High (I:H) .75

Critical (I:C) 1

None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75

Critical 1

None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75

Critical (D:C) 1

None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium: (Y:M) 0.5
High: (Y:H) 0.75

Critical (Y:H)

Impact / is calculated using the following formula:

I = max(my) +

> my; — max(my)

4

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be
reversed. For upgradeable contracts, assume the contract private key is
available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-
sources in other contracts.

EXECUTIVE OVERVIEW

Coefficient _ :
©) Coefficient Value Numerical Value
None (R:N) 1
Reversibility (r) Partial (R:P) 0.5
Full (R:F) 0.25
Changed (S:C) 1.25

Scope (s)

Unchanged (S:U)

Severity Coefficient (' is obtained by the following product:

C=rs

12

EXECUTIVE OVERVIEW

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC = 10)

The score is rounded up to 1 decimal places.

Severity Score Value Range
Critical 9 -10
High 7 -8.9
4.5 - 6.9
2 - 4.4
0 -1.9

13

EXECUTIVE OVERVIEW

2.4 SCOPE

Code repositories:

1. Token Extensions

Repository: spl-token-2022

Commit Range:

® initial: 4587dal
®* final: 56aaab7

Programs in scope:

1. spl-token-2022 (token/program-2022)

Out-of-scope:
- third-party libraries and dependencies
- financial-related attacks

14

https://github.com/solana-labs/solana-program-library/blob/master/token/program-2022
https://github.com/solana-labs/solana-program-library/commit/4587da1eaba44425b872a8a7174409c4dca816a3
https://github.com/solana-labs/solana-program-library/commit/56aaa6732670824273414bb14bbea12c83a46829

EXECUTIVE OVERVIEW

3. ASSESSMENT SUMMARY & FINDINGS

OVERVIEW

CRITICAL

HIGH

2

15

EXECUTIVE OVERVIEW

SECURITY ANALYSIS

RISK LEVEL

(HAL-01) INFLATING SUPPLY ON
CONFIDENTIAL TRANSFERS

Critical (10)

(HAL-02) INFLATING SUPPLY ON
ENCRYPTED BALANCE WITHDRAW

(HAL-03) SILENT TOKEN BURN ON EMPTY
ACCOUNT

(HAL-04) MINT ADDRESS VERIFICATION
MISSING ON APPROVE

(HAL-05) INCORRECT ACCOUNT ORDER

(HAL-06) CONFIDENTIAL TRANSFER
AMOUNTS INFO LEAK VIA TRANSFER FEES

(HAL-07) UNCONSTRAINED CONFIDENTIAL
TRANSFER FEE WITHDRAW

(HAL-08) MULTISG SIGNERS NOT
REFERENCED CORRECTLY BY THE
INSTRUCTION BUILDER

Critical (10)

REMEDIATION DATE

16

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

4.1 (HAL-01) INFLATING SUPPLY ON
CONFIDENTIAL TRANSFERS -

Description:

Transfers between confidential accounts necessitate a zero-knowledge (ZK)
proof that verifies two conditions: the source account has a balance
greater than the amount being transferred, and the amount being trans-
ferred is non-negative. These transactions are executed through two
distinct operations. The initial operation involves a ZK proof that
validates the legitimacy of the transfer without revealing any details
about the account balances or the amount transferred. The subsequent op-
eration handles the computational aspects and updates the account states
to finalize the transfer.

The verification of the ZK proof is carried out by a dedicated built-in
program, which checks the proof’s correctness. If the proof fails to
validate, the operation is aborted. Specifically, the ZK proof com-
prises an equation with variables representing the states of the accounts
participating in the transaction.

The execution of the second operation falls to the token program, which
ensures the presence and integrity of the ZK proof and its consistency with
the current account states, thus linking the proof to the blockchain’s
state.

However, the token program overlooks the full verification of the ZK proof
inputs. It neglects the new_source_ciphertext field within the ZK proof,
which is supposed to hold the encrypted balance of the source account
after the transaction. The omission of this check means the encrypted
balance of the source account is not verified, disconnecting the ZK proof
from the actual balance in the source account.

18

FINDINGS & TECH DETAILS

Code Location:

42 #[derive(Clone, Copy, Pod, Zeroable)]
43 #[repr(C)]
44 pub struct TransferData {

45 /// Group encryption of the low 32 bits of the transfer amount
46 pub ciphertext_lo: pod::TransferAmountEncryption,

47

48 /// Group encryption of the high 32 bits of the transfer

L, amount

49 pub ciphertext_hi: pod::TransferAmountEncryption,

50

51 /// The public encryption keys associated with the transfer:
L, source, dest, and auditor

572 pub transfer_pubkeys: pod::TransferPubkeys,

53

54 /// The final spendable ciphertext after the transfer

55 pub new_source_ciphertext: pod::ElGamalCiphertext,

56

57/ /// Zero-knowledge proofs for Transfer

58 pub proof: TransferProof,

59 3}

622 #[allow(clippy::too_many_arguments)]
623 #[cfg(feature = "zk-ops")]
624 fn process_source_for_transfer(

625 program_id: &Pubkey,

626 token_account_info: &AccountInfo,

627 mint_info: &AccountInfo,

628 authority_info: &AccountInfo,

629 signers: &[AccountInfol],

630 source_encryption_pubkey: &EncryptionPubkey,

631 source_ciphertext_lo: &EncryptedBalance,

632 source_ciphertext_hi: &EncryptedBalance,

633 new_source_decryptable_available_balance: DecryptableBalance,

634) -> ProgramResult {

19

FINDINGS & TECH DETAILS

Proof of Concept:

To exploit the described vulnerability, multiple transfers that cumula-
tively exceed the encrypted balance of the source account can be performed.
The vulnerability can be demonstrated through a proof-of-concept exploit
that involves a transaction with several instructions for transfers, all

linked to a single instruction that includes the ZK proof.

As a result of this exploit, the encrypted balance of the source account
underflows and fails silently, rendering it invalid, while the encrypted
pending balance of the destination account receives credits multiple
times. This anomaly effectively generates tokens from nothing, leading to
an increase in the token supply which is not reflected in the total_supply
of the mint account. Consequently, the destination account can integrate
the unjustly acquired balance and utilize it as if it was legitimately

obtained.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:C/Y:N/R:N/S:U (10)

Recommendation:

When transferring, ensure the encrypted balance of the source account
is aligned with the expected amount included in the ZK argument as

new_source_ciphertext.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit c7fbd4b.

20

https://github.com/solana-labs/solana-program-library/commit/c7fbd4b69b5021e3fecee7ec439d6fba2950d235

FINDINGS & TECH DETAILS

4.2 (HAL-02) INFLATING SUPPLY ON
ENCRYPTED BALANCE WITHDRAW -

Description:

The transaction for a confidential withdrawal is divided into two parts:
one for verifying the ZK proof through a specialized built-in program
(which aborts the transaction if the proof is invalid), and another for
the SPL Token 2022 program to process the balance operations and execute
the withdrawal. The program checks for the presence of the ZK proof and
its inputs’ alignment with the account states, thereby linking the proof
to the blockchain’s current state.

However, the program fails to verify that the public key associated with
the ZK proof matches the public key of the source account’s encrypted
balance. This oversight allows an attacker to forge a ZK proof to
authorize any withdrawal amount, irrespective of the source account’s

actual encrypted balance.

By exploiting this flaw, an attacker could withdraw an unlimited amount of
tokens to their plaintext balance, effectively creating tokens from thin
air and causing inflation of the token supply. This inflation would not
be recorded in the mint account associated with the token. The inflated
plaintext balance becomes spendable like any legitimate account balance.
While full exploitability of this vulnerability has not been confirmed,
the Solana team acknowledges that forging a deceptive ZK proof is likely
feasible.

21

FINDINGS & TECH DETAILS

Code Location:

84 pub struct ConfidentialTransferAccount {

85 /// “true® if this account has been approved for use. All

L, confidential transfer operations for

86 /// the account will fail until approval is granted.

87 pub approved: PodBool,

88

89 /// The public key associated with ElGamal encryption

90 pub encryption_pubkey: EncryptionPubkey,

91

92 /// The low 16 bits of the pending balance (encrypted by °
L, encryption_pubkey ‘)

93 pub pending_balance_lo: EncryptedBalance,

94

95 /// The high 48 bits of the pending balance (encrypted by °
L, encryption_pubkey ‘)

96 pub pending_balance_hi: EncryptedBalance,

97

98 /// The available balance (encrypted by ‘encrypiton_pubkey ‘)
99 pub available_balance: EncryptedBalance,

100

101 /// The decryptable available balance

102 pub decryptable_available_balance: DecryptableBalance,

103

Nz /// ‘pending_balance® may only be credited by ‘Deposit‘ or °
L, Transfer® instructions if ‘true®

105 pub allow_balance_credits: PodBool,

106

107 /// The total number of ‘Deposit‘® and ‘Transfer® instructions
L, that have credited

108 /// ‘pending_balance®

109 pub pending_balance_credit_counter: PodU64,

110

111 /// The maximum number of ‘Deposit‘ and ‘Transfer®

L, instructions that can credit

112 /// ‘pending_balance‘ before the ‘ApplyPendingBalance’

L, instruction is executed

113 pub maximum_pending_balance_credit_counter: PodU64,

114

115 /// The ‘expected_pending_balance_credit_counter® value that

L, was included in the last

116 /// “ApplyPendingBalance® instruction

FINDINGS & TECH DETAILS

117 pub expected_pending_balance_credit_counter: PodU64,
118

119 /// The actual ‘pending_balance_credit_counter® when the last
L, “ApplyPendingBalance® instruction

120 /// was executed

121 pub actual_pending_balance_credit_counter: PodU64,

122

123 /// The withheld amount of fees. This will always be zero if
L, fees are never enabled.

124 pub withheld_amount: EncryptedWithheldAmount,

125 }

34 pub struct WithdrawData {

35 /// The source account ElGamal pubkey

36 pub pubkey: pod::ElGamalPubkey, // 32 bytes

37

38 /// The source account available balance *afterx the withdraw

L, (encrypted by

39 /// ‘source_pk"*
40 pub final_ciphertext: pod::ElGamalCiphertext, // 64 bytes
41
42 /// Range proof
43 pub proof: WithdrawProof, // 736 bytes
44 3}
BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:M/D:C/Y:N/R:N/S:U (10)

Recommendation:

Ensure to verify that ConfidentialTransferAccount.encryption_pubkey
matches WithdrawData.pubkey when processing withdraws.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit 94b912a.

23

https://github.com/solana-labs/solana-program-library/commit/94b912a2b2d26462793e990a1168569c8cb1f3a6

FINDINGS & TECH DETAILS

4.3 (HAL-03) SILENT TOKEN BURN ON
EMPTY ACCOUNT - MEDIUM (6.7)

Description:

In the token-2022 program, an account holding tokens can only be closed
if its balance is zero, a rule that applies both to the plaintext balance
and to encrypted balances managed by the confidential transfer feature.
To close an account with encrypted balances, a specific instruction named
EmptyAccount must be executed. This instruction requires the verification
of a zero-knowledge (ZK) proof demonstrating that the account’s balance

is indeed zero.

As with other operations involving confidential tokens, the ZK proof must
be included within an instruction in the transaction that triggers the
EmptyAccount instruction handler. The handler verifies the existence of
the ZK proof and its correlation with the blockchain’s current state.

However, the verification process fails to ensure that the public key
linked to the ZK proof matches the public key of the token account
intended for closure. This oversight could enable an attacker to present
a fabricated ZK proof, erroneously indicating that the account balance
is zero, thereby permitting the closure of an account with a nonzero

balance.

Closing an account in this manner could lead to a reduction in the
circulating token supply without the corresponding supply tracker in the
mint account being updated. It is worth to note an attacker would forfeit
their balance by performing this action, making the practical incentive
for such an attack unclear.

24

FINDINGS & TECH DETAILS

Code Location:

27 pub struct CloseAccountData {
28 /// The source account ElGamal pubkey
29 pub pubkey: pod::ElGamalPubkey, // 32 bytes
30
31 /// The source account available balance in encrypted form
32 pub ciphertext: pod::ElGamalCiphertext, // 64 bytes
33
34 /// Proof that the source account available balance is zero
35 pub proof: CloseAccountProof, // 64 bytes
36 }
BVSS:

AO:A/AC:M/AX:L/C:N/I:N/A:N/D:C/Y:N/R:N/S:U (6.7)

Recommendation:

Ensure

to

verify that ConfidentialTransferAccount.encryption_pubkey

matches CloseAccountData.pubkey when processing account close.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit d6a72eb.

25

https://github.com/solana-labs/solana-program-library/commit/d6a72ebfe42254d25c8072875510efbbf8b5312c

FINDINGS & TECH DETAILS

4.4 (HAL-04) MINT ADDRESS
VERIFICATION MISSING ON APPROVE -
MEDIUM (6.2)

Description:

The process_approve_account function is designed to prepare a token ac-
count for confidential transfers by authorizing its account authority.
However, it omits an essential verification step to ensure that the mint
associated with the token account corresponds to the mint intended for
the confidential transfer approval.

As a consequence, the system permits the approval of token accounts for
confidential transfers, even when those accounts belong to a different
mint than the one being authorized. Token accounts are expected to hold
tokens only from their associated mint. The absence of a check for mint
alignment allows for the approval of any token account for confidential
transfers, disregarding this principle.

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:M/D:N/Y:N/R:N/S:U (6.2)

Recommendation:

Modify the conditions in the process_transfer, verify_transfer_with_fee_proof

and verify_transfer_proof functions, and amend the ordering of accounts
in the transfer_with_split_proofs function such that the new condi-
tions accurately reflect the order of accounts as required by the

transfer_with_split_proofs instruction handler.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit b410945.

26

https://github.com/solana-labs/solana-program-library/commit/b41094566e04c5b3e93f28cb92dd5d09ae9becc5

FINDINGS & TECH DETAILS

4.5 (HAL-05) INCORRECT ACCOUNT
ORDER - MEDIUM (5.0)

Description:

The transfer_with_split_proofs function in the token-2022 program com-
piles a sequence of seven AccountMetas to detail the accounts partic-
ipating in a transaction. The process_transfer instruction handler
iterates over these accounts, and the verify_transfer_proof function
iterates over the first three of the seven accounts required by the

transfer_with_split_proofs function.

When the no_op_on_split_proof_context_state flag is set to false and the
close_split_context_state_on_execution flag is set to true, the pro-
cess enters a conditional block where account_info_iter is supposed
to fetch the next account as lamport_destination_account_info for lam-
port transfers. However, due to the misalignment of account order,
source_account_authority is loaded instead of the intended lamport des-
tination. This account is a signer account.

As a result, when closing each split context state account, the sys-
tem mistakenly uses lamport_destination_account_info, now referencing
source_account_authority, as the recipient for lamport transfers. This
unintentionally directs lamports to the signing authority of the source
account, diverging from the expected behavior. A similar problem occurs
during transfers that involve fees.

Additionally, if the no_op_on_split_proof_context_state flag is
set to true and a required context state account is wuninitial-
ized, «calling the verify_transfer_proof function leads to a return
value of None. Should the close_split_context_state_on_execution
flag also be true under these conditions, the process_transfer
function attempts to reset lamport_destination, context_accounts.
authority, and zk_token_proof_program addresses, intending to load
source_account_authority into authority_info. However, due to the
account order error, source_account_authority, lamport_destination, and

context_accounts.authority are erroneously cleared, and authority_info

27

FINDINGS & TECH DETAILS

gets assigned to the zk_token_proof_program account.

This misalignment can cause failures in verifying the zero-knowledge
proof essential for confirming the transfer’s validity.
proof or the verification process may lead to transaction errors and the

inability to complete the transfer.

Code Location:

331
332
333
334
335

336
337

338
339
340
341
342

343

344
345

346
347
348

349
350

351
352
353
354

let close_split_context_state_on_execution =
if let Some(close_split_context_state_on_execution_accounts) =

context_accounts.close_split_context_state_accounts

// If “close_split_context_state_accounts® is set, then
all context state accounts must
// be “writable.
accounts.push(AccountMeta::new(*context_accounts.
equality_proof, false));
accounts.push(AccountMeta::new(
*context_accounts.ciphertext_validity_proof,
false,
));
accounts.push(AccountMeta::new(*context_accounts.
range_proof, false));
accounts.push(AccountMeta::new_readonly (*
source_account_authority, true));
accounts.push(AccountMeta::new(
*close_split_context_state_on_execution_accounts.
lamport_destination,
false,
));
accounts.push(AccountMeta::new_readonly (*context_accounts.
authority, true));
accounts.push(AccountMeta::new_readonly(
*close_split_context_state_on_execution_accounts.
zk_token_proof_program,
false,
b
true
} else {

Failure of the

28

FINDINGS & TECH DETAILS

855

L
356
357
358
359
360
361
362
363
364
365
366
367
368
369

Ls
370
371
372

// If “close_split_context_state_accounts' is not set,
then context state accounts can
// be read-only.

*context_accounts.equality_proof,
false,

B

accounts.push(AccountMeta::new_readonly(
*context_accounts.ciphertext_validity_proof,
false,

));

accounts.push(AccountMeta::new_readonly(
*context_accounts.range_proof,
false,

accounts.push(AccountMeta::new_readonly (*
source_account_authority, true));

false

3

186
187

188

Ls
189
190
191
192
193
194

L
195

196
197
198
199
200

if close_split_context_state_on_execution {

let context_state_account_authority_info = next_account_info(
account_info_iter)?;

msg! ("Closing equality proof context state account”);
invoke (
&zk_token_proof_instruction::close_context_state(
ContextStateInfo {
context_state_account:
equality_proof_context_state_account_info.key,
context_state_authority:
context_state_account_authority_info.key,

3,

lamport_destination_account_info.key,

equality_proof_context_state_account_info.clone(),

29

FINDINGS & TECH DETAILS

201 lamport_destination_account_info.clone(),

202 context_state_account_authority_info.clone(),
203 1

204 E

145 if no_op_on_split_proof_context_state
146 && check_system_program_account (

L, equality_proof_context_state_account_info.owner).is_ok()
147 {

148 msg! ("Equality proof context state account not initialized
BO¥

149 return Ok (None);

150 3

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:M/D:N/Y:N/R:N/S:U (5.0)

Recommendation:

Modify the conditions in the process_transfer, verify_transfer_with_fee_proof
and verify_transfer_proof functions, and amend the ordering of accounts

in the transfer_with_split_proofs function such that the new condi-
tions accurately reflect the order of accounts as required by the
transfer_with_split_proofs instruction handler.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit 5dal84a.

30

https://github.com/solana-labs/solana-program-library/commit/5da184aed56cda46b0006ebf3ea5d617ef0501a8

FINDINGS & TECH DETAILS

4.6 (HAL-06) CONFIDENTIAL TRANSFER
AMOUNTS INFO LEAK VIA TRANSFER
FEES - MEDIUM (5.0)

Description:

In the token-2022 program tokens can be set to incur a transfer fee,
which is a percentage of the transaction amount and may have a maximum fee
limit. This setup extends to confidential transfers, which utilize zero-
knowledge proofs to confirm the legitimacy of encrypted balance changes.
However, this mechanism inadvertently reveals information about every
transfer’s value to the individuals holding the transfer fee management
keys.

Owners of the keys responsible for fee management can discern the value
of confidential transfers by decrypting and comparing the fee balance
before and after each transfer. When the fee is below the maximum cap,
the precise transfer amount can be deduced. If the fee hits the cap, it
implies that the transfer amount was at least the minimum necessary to

incur the maximum fee.

BVSS:

AO:A/AC:L/AX:L/C:M/I:N/A:N/D:N/Y:N/R:N/S:U (5.0)

Recommendation:

Educate the program users on this limitation of the confidential transfer
feature.

Remediation Plan:

SOLVED: The Solana team solved this issue in commit Tc3afbe.

https://github.com/solana-labs/solana-program-library/commit/1c3af5e53d83392fca1a6823aec1bd8dbfd73d95

FINDINGS & TECH DETAILS

4.7 (HAL-07) UNCONSTRAINED
CONFIDENTIAL TRANSFER FEE
WITHDRAW - LOW (2.5)

Description:

The procedures for processing confidential transfer instruc-
tions, specifically WithdrawWithheldTokensFromAccounts and
WithdrawWithheldTokensFromMint, overlook certain limitations that should
apply to confidential token accounts. These oversights include not adher-
ing to an account’s setting that may block credits to its pending balance,
and failing to check or wupdate the pending_balance_credit_counter,
which should not exceed maximum_pending_balance_credit_counter. These
functions directly transfer the full amount of withheld balance to the
pending_balance_lo of the recipient account, potentially exceeding the
decryptable limit of the balance.

An attacker with access to the fee management keys could manipulate the
encrypted pending balance of an account, overriding the account owner’s
settings and potentially rendering the balance not decryptable for the

victim.

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (2.5)

Recommendation:

Revert the transaction 1if allow_balance_credits 1is set on the
destination account or if pending_balance_credit_counter is
greater or equal maximum_pending_balance_credit_counter. Incre-
ment pending_balance_credit_counter after the transfer is executed.

FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The Solana team solved this issue in commit 16384e2.

33

https://github.com/solana-labs/solana-program-library/commit/16384e2f00ea27713c01456a6f96226401b0174f

FINDINGS & TECH DETAILS

4.8 (HAL-08) MULTISG SIGNERS NOT
REFERENCED CORRECTLY BY THE
INSTRUCTION BUILDER - INFORMATIONAL
(0.0)

Description:

This vulnerability affects the handling of multi-signature ac-
counts during the creation of withdrawal instructions for withheld
tokens in the confidential transfer fee feature, in both the

withdraw_withheld_tokens_from_mint and withdraw_withheld_tokens_from_accounts

handlers.

The issue arises from treating multi-signature accounts as non-signer ac-
counts by the instruction builder inner_withdraw_withheld_tokens_from_mint
and inner_withdraw_withheld_tokens_from_accounts functions. For
withdrawals, the builder should reference multi-signature participants
as signers, but it mistakenly categorizes them as non-signers. This
misclassification can cause transactions to fail, especially when
validating ownership in multi-signature accounts that necessitate

multiple signers.

Code Location:

388 accounts.push(AccountMeta::new_readonly(

389 *authority,

390 multisig_signers.is_empty(),

391));

392

393 for multisig_signer in multisig_signers.iter() {

394 accounts.push(AccountMeta::new(**xmultisig_signer, false));
395 }

34

FINDINGS & TECH DETAILS

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation:

Reference the multisig signers as signers when assembling the withdraw

fee instructions

Remediation Plan:

SOLVED: The Solana team solved this issue in commit d3de202.

35

https://github.com/solana-labs/solana-program-library/commit/d3de20251f28954fbbfea717ab75ae5bce4bb7c6

FINDINGS & TECH DETAILS

4.9 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with the detection of
well-known security issues and vulnerabilities. Among the tools used was
cargo-audit, a security scanner for vulnerabilities reported to the Rust-
Sec Advisory Database. All vulnerabilities published in https://crates.io
are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs
a scanning on Cargo.lock. Security Detections are only in scope. All
vulnerabilities shown here were already disclosed in the above report.
However, to better assist the developers maintaining this code, the re-
viewers are including the output with the dependencies tree, and this
is included in the cargo audit output to better know the dependencies
affected by unmaintained and vulnerable crates.

Results:

ID package Short Description

dalek Attack on ‘ed25519-dalek*

RUSTSEC-2022-0093 | ed25519- Double Public Key Signing Function Oracle

36

https://rustsec.org/advisories/RUSTSEC-2022-0093

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof of Concept
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	AUTOMATED ANALYSIS
	Description
	Results

