// HALBORN

Solana - Stake
Pool

Solana Program Security
Assessment

Prepared by: Halborn
Date of Engagement: December 11th, 2023 - December 31st, 2023

Visit: Halborn.com


https://halborn.com

DOCUMENT REVISION HISTORY

CONTACTS

1

EXECUTIVE OVERVIEW

INTRODUCTION

ASSESSMENT SUMMARY

TEST APPROACH & METHODOLOGY

RISK METHODOLOGY

EXPLOITABILITY

IMPACT

SEVERITY COEFFICIENT

SCOPE

ASSESSMENT SUMMARY & FINDINGS OVERVIEW

FINDINGS & TECH DETAILS

11

13

14

15

(HAL-01) USERS COULD AVOID FEES BY DEPOSITING SMALL AMOUNTS OF

SOL - LOW(2.5)
Description

Code Location
Proof Of Concept
BVSS
Recommendation

Remediation Plan

MANUAL TESTING

17

17

17

18

18

19

19

20



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE
0.1 Document Creation 12/31/2023
0.2 Draft Version 01/08/2024
0.3 Draft Review 01/08/2024
0.4 Draft Review 01/09/2024
1.0 Remediation Plan 01/17/2024
1.1 Remediation Plan Review 01/17/2024
1.2 Remediation Plan Review 01/18/2024
1.3 Remediation Plan Updates 01/22/2024
1.4 Remediation Plan Updates Review 01/22/2024




CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Piotr Cielas Halborn Piotr.Cielas@halborn.com



mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com

EXECUTIVE OVERVIEW




EXECUTIVE OVERVIEW

1.7 INTRODUCTION

The Solana stake-pool program allows for the creation of stake pools,
which introduce the ability for multiple stakeholders to aggregate their
stake into a single pool. This benefits smaller stakeholders, who can
participate in the staking process without needing to run their own
validator node, increasing network security and health. The stake-pool
program allows liquid-staking, where pool tokens are given to the staker
in exchange for their SOL, depending on the proportion of stake they have
supplied to the pool. This improves liquidity for stakers since these
tokens can be used throughout the ecosystem, whereas traditional staking
would require the users’ tokens to be locked.

Solana engaged Halborn to conduct a security assessment on their Solana
programs, beginning on December 11th, 2023 and ending on December 31st,
2023 . The security assessment was scoped to a few pull requests to
the stake-pool program provided in the solana-program-library GitHub
repository. Commit hashes and further details can be found in the Scope
section of this report.

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided two weeks and a half for the engagement
and assigned one full-time security engineer to review the security
of the programs in scope. The security engineer is a blockchain and
Solana program security expert with advanced penetration testing and
Solana program hacking skills, and deep knowledge of multiple blockchain
protocols.

The purpose of this assessment is to:

®* Identify potential security issues within the programs

In summary, Halborn identified one security risk that will be addressed


https://github.com/solana-labs/solana-program-library

EXECUTIVE OVERVIEW

by the Solana team in a future release.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of a manual review of the source code
and automated security testing to balance efficiency, timeliness, prac-
ticality, and accuracy in regard to the scope of the program assessment.
While manual testing is recommended to uncover flaws in business logic,
processes, and implementation; automated testing techniques help enhance
coverage of programs and can quickly identify items that do not follow
security best practices.

The following phases and associated tools were used throughout the term
of the assessment:

® Research into the architecture, purpose, and use of the platform.
Manual program source code review to identify business logic issues.
® Mapping out possible attack vectors

®* Thorough assessment of safety and usage of critical Rust variables
and functions in scope that could lead to arithmetic vulnerabilities.

Scanning dependencies for known vulnerabilities (cargo audit).

® Local runtime testing (solana-test-framework)



EXECUTIVE OVERVIEW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two
sets of Metrics and a Severity Coefficient. This system is inspired by
the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability
captures the ease and technical means by which vulnerabilities can be
exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of
the ranking with two factors: Reversibility and Scope. These capture the
impact of the vulnerability on the environment as well as the number of
users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and
10 corresponding to the highest security risk. This provides an objective
and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-
nerabilities based on their level of risk to address the most critical
issues in a timely manner.



EXECUTIVE OVERVIEW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker
relative to sending a single transaction on the relevant blockchain.
Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in
order to exploit the vulnerability. Includes but is not limited to macro
situation, available third-party liquidity and regulatory challenges.

Metrics:
Exploitability Metric . :
Metric Value Numerical Value
(mg)
L Arbitrary (AO:A) 1
Attack Origin (AO) o
Specific (AO:S) 0.2
Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33
Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability /£ is calculated using the following formula:

E = n Me



EXECUTIVE OVERVIEW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources
managed by the contract due to a successfully exploited vulnerability.
Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-
ity. Integrity refers to the trustworthiness and veracity of data stored
and/or processed on-chain. Integrity impact directly affecting Deposit
or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-
sulting from a successfully exploited vulnerability. This metric refers
to smart contract features and functionality, not state. Availability
impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either
users or owners.



EXECUTIVE OVERVIEW

Metrics:

Impact Metric

Metric Value

Numerical Value

(mp)

None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

None (I:N) 0
Low (I:L) 0.25
Integrity (I) Medium (I:M) 0.5
High (I:H) .75

Critical (I:C) 1

None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75

Critical 1

None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75

Critical (D:C) 1

None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium: (Y:M) 0.5
High: (Y:H) 0.75

Critical (Y:H)

Impact / is calculated using the following formula:

I = max(my) +

> my; — max(my)

4




2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be
reversed. For upgradeable contracts, assume the contract private key is
available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-
sources in other contracts.

EXECUTIVE OVERVIEW

Coefficient _ :
©) Coefficient Value Numerical Value
None (R:N) 1
Reversibility (r) Partial (R:P) 0.5
Full (R:F) 0.25
Changed (S:C) 1.25

Scope (s)

Unchanged (S:U)

Severity Coefficient (' is obtained by the following product:

C=rs

11



EXECUTIVE OVERVIEW

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC = 10)

The score is rounded up to 1 decimal places.

Severity Score Value Range
Critical 9 -10
High 7 -8.9
4.5 - 6.9
2 - 4.4
0 -1.9

12



EXECUTIVE OVERVIEW

2.4 SCOPE

Code repositories:
1. Solana stake-pool program

® Repository: solana-program-library

® Pull Requests in scope:

® #5285
® #5288
® #5322

®* Programs in scope:

1. stake-pool (/stake-pool/program)

Out-of-scope:
- third-party libraries and dependencies
- financial-related attacks

13


https://github.com/solana-labs/solana-program-library
https://github.com/solana-labs/solana-program-library/pull/5285/
https://github.com/solana-labs/solana-program-library/pull/5288/
https://github.com/solana-labs/solana-program-library/pull/5322/

EXECUTIVE OVERVIEW

3. ASSESSMENT SUMMARY & FINDINGS

OVERVIEW

CRITICAL

HIGH

0

14



EXECUTIVE OVERVIEW

SECURITY ANALYSIS

(HAL-01) USERS COULD AVOID FEES BY
DEPOSITING SMALL AMOUNTS OF SOL

RISK LEVEL

REMEDIATION DATE

15



FINDINGS & TECH
DETAILS




FINDINGS & TECH DETAILS

4.1 (HAL-01) USERS COULD AVOID FEES
BY DEPOSITING SMALL AMOUNTS OF SOL -
LOW (2.5)

Description:

In the process_deposit_sol function, there are multiple fees which are
deducted from the pool_tokens which will be minted to the user and the sol
deposited to the stake account. In the case the Sol deposited is small,
it is possible the fee calculations round down to zero due to loss of
precision, preventing fee collection even though the user has deposited
SOL and been minted pool_tokens in return. However, this scenario would
not be economically viable, and the cost of fee avoidance would outweigh
the benefit of depositing such a small amount to the stake pool.

Code Location:

8051 let new_pool_tokens = stake_pool

8052 .calc_pool_tokens_for_deposit(deposit_lamports)
8053 .ok_or (StakePoolError::CalculationFailure)?;
8054

BO55 // @test - possible rounding down, preventing fee from being
L, collected
8056 let pool_tokens_sol_deposit_fee = stake_pool

BO57 .calc_pool_tokens_sol_deposit_fee(new_pool_tokens)

8058 .ok_or (StakePoolError::CalculationFailure)?;

8059

8060 let pool_tokens_user = new_pool_tokens

8061 .checked_sub(pool_tokens_sol_deposit_fee)

B062 .ok_or(StakePoolError::CalculationFailure)?;

B063 // @audit - referral_fee will == @ in case
L, pool_tokens_sol_deposit_fee == 0

B064 //

8065 let pool_tokens_referral_fee = stake_pool

B066 .calc_pool_tokens_sol_referral_fee(pool_tokens_sol_deposit_fee
L)

BO67 .ok_or (StakePoolError::CalculationFailure)?;

17



FINDINGS & TECH DETAILS

8068 let pool_tokens_manager_deposit_fee = pool_tokens_sol_deposit_fee
B069 .checked_sub(pool_tokens_referral_fee)
BO70 .ok_or (StakePoolError::CalculationFailure)?;

1 pub fn apply(&self, amt: u64) -> Option<ul28> {
2 if self.denominator == @ {

3 return Some (@) ;

4 }

5 (amt as ul128)

6 .checked_mul (self.numerator as ul28)?

7 .checked_div (self.denominator as ul128)
8 %}

Proof Of Concept:

fn test_fee() (
let fee = Fee {
denominator: 100,

numerator: 2

1
2
3
4
5
6
7 let minted_pool_tokens: u64 = 2;

8 let fee_applied = fee.apply(minted_pool_tokens).unwrap();
9 assert! (fee_applied != 0);

0

10 }

The following test will fail even though the minted_pool_tokens != 0.
Since the apply function is used for multiple fee calculations in the
process_deposit_sol function, the same behavior will occur for multiple
fee calculations.

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:L/R:N/S:U (2.5)

18



FINDINGS & TECH DETAILS

Recommendation:

Include check that ensures fee != @ for fees collected 1in
process_deposit_sol

Remediation Plan:

SOLVED: This finding was remediated in commit 79243a3b874, which intro-
duces fee rounding in favor of the pool, preventing the fees from rounding
down to zero.

19



MANUAL TESTING




In the manual testing phase, the following scenarios were simulated.
The scenarios listed below were selected based on the severity of the
vulnerabilities Halborn was testing the program for.

MANUAL TESTING

Scenario

Expectation

can call initialize with
arbitrary address, who
isnt signer

tx fails

possible to pass in
stake-pool not owned by
stake-pool program

tx fails

possible to pass in
stake-pool that is already
initialized

tx fails

possible to use validator
list not owned by
stake-pool program

tx fails

possible to set max
validators ==

tx fails

possible to implement fee
> 100possible to add
duplicate validator to
validator list

tx fails

fee rounds in favor of
stake-pool, not user

fee cannot round down to
zero

possible to pass in
invalid pool mint, !=
legitimate mint

tx fails

possible to initialize
pool mint with supply != 0

tx fails

deposit_authority can
collide with authority for

a different pool

pda collision not possible

Result

fail

21



THANK YOU FOR CHOOSING

// HALBORN




	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof Of Concept
	BVSS
	Recommendation
	Remediation Plan


	MANUAL TESTING

