
Solana Labs -
Solana v1.11.3 -

v1.14.1
Solana Program Security Audit

Prepared by: Halborn

Date of Engagement: September 19th, 2022 - November 21st, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) POSSIBLE RUST PANICS DUE TO UNSAFE UNWRAP USAGE -

INFORMATIONAL 13

Description 13

Code Location 13

Risk Level 16

Recommendation 17

Remediation Plan 17

4 MANUAL TESTING 18

4.1 LOSS OF FUNDS 19

Description 19

Results 19

4.2 CONSENSUS 19

Description 19

Results 20

4.3 BUSINESS PROCESS DESIGN 20

1

Description 20

Results 20

4.4 DENIAL OF SERVICE 20

Description 20

Results 21

5 AUTOMATED TESTING 21

5.1 AUTOMATED ANALYSIS 23

Description 23

Results 23

5.2 UNSAFE RUST CODE DETECTION 24

Description 24

Results 24

2

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 10/25/2022 Guillermo Alvarez

0.2 Document Updates 11/21/2022 Michael Smith

0.3 Final Draft 11/21/2022 Guillermo Alvarez

0.4 Draft Review 11/22/2022 Piotr Cielas

0.5 Draft Review 11/22/2022 Gabi Urrutia

1.0 Remediation Plan 01/05/2023 Guillermo Alvarez

1.1 Remediation Plan Review 01/05/2023 Isabel Burruezo

1.2 Remediation Plan Review 01/05/2023 Piotr Cielas

1.3 Remediation Plan Review 01/05/2023 Gabi Urrutia

3

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Isabel Burruezo Halborn Isabel.Burruezo@halborn.com

Guillermo Alvarez Halborn Guillermo.Alvarez@halborn.com

Michael Smith Halborn Michael.Smith@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Isabel.Burruezo@halborn.com
mailto:Guillermo.Alvarez@halborn.com
mailto:Michael.Smith@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Solana is an open-source project implementing a new, high-performance,

permissionless blockchain. Changes in scope affected several modules,

the most important ones are briefly described. Sealevel, Solana’s par-

allel smart contracts runtime, is a concurrent transaction processor.

Transactions specify their data dependencies upfront, and dynamic memory

allocation is explicit. By separating program code from the state it

operates on, the runtime is able to choreograph concurrent access. Gulf

Stream the transaction forwarding protocol, which is Solana’s mempool-

less solution for forwarding and storing transactions before processing

them. The Gossip Service acts as a gateway to nodes in the control plane.

Validators use the service to ensure information is available to all

other nodes in a cluster. TPU (Transaction Processing Unit) is the logic

of the validator responsible for block production.

Halborn conducted a security audit on the Solana v1.11.3 to v1.14.1

changes beginning on September 19th, 2022 and ending on November 21st,

2022 . The security assessment was scoped to the implementation of the

updates up to v1.14.1 provided in the solana GitHub repository. Commit

hashes and further details can be found in the Scope section of this

report.

1.2 AUDIT SUMMARY

The team at Halborn was provided nine weeks for the engagement and

assigned two full-time security engineers to audit the security of the

code in scope . The security engineers are blockchain and smart contract

security experts with advanced penetration testing, program hacking, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that program functions operate as intended

• Identify potential security issues with the programs

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana

In summary, Halborn did not identify any security risk affecting the new

updates introduced from version 1.11.3 to version 1.14.1. An informa-

tional finding was presented and acknowledged by the Solana team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of a manual review of the source code

and automated security testing to balance efficiency, timeliness, prac-

ticality, and accuracy in regard to the scope of the program audit.

While manual testing is recommended to uncover flaws in business logic,

processes, and implementation; automated testing techniques help enhance

coverage of programs and can quickly identify items that do not follow

security best practices.

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Manual program source code review to identify business logic issues.

• Mapping out possible attack vectors

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could led to arithmetic vulnerabilities.

• Finding unsafe Rust code usage (cargo-geiger)

• Scanning dependencies for known vulnerabilities (cargo audit).

• Local runtime testing (solana-test-framework)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

Code repositories:

1. Solana

• Repository: solana

• Commits v1.11.3-v1.14.1:

• start: 9798e8b1f5ba774ff700a2136f7a5531f6f4dfb9

• end: fd5df1cf25999a50c6c2616340f95c2115b585df

Out-of-scope:

- third-party libraries and dependencies

- financial-related attacks

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana
https://github.com/solana-labs/solana/commit/9798e8b1f5ba774ff700a2136f7a5531f6f4dfb9
https://github.com/solana-labs/solana/commit/fd5df1cf25999a50c6c2616340f95c2115b585df

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 1

IM
PA
CT

LIKELIHOOD

(HAL-01)

10

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) POSSIBLE RUST PANICS DUE
TO UNSAFE UNWRAP USAGE

Informational ACKNOWLEDGED

11

EX
EC

UT
IV

E
OV

ER
VI

EW

12

FINDINGS & TECH
DETAILS

3.1 (HAL-01) POSSIBLE RUST PANICS
DUE TO UNSAFE UNWRAP USAGE -
INFORMATIONAL

Description:

The use of helper methods in Rust, such as unwrap, is allowed in dev and

testing environment because those methods are supposed to throw an error

(also known as panic!) when called on Option::None or a Result which is

not Ok. However, keeping unwrap functions in production environment is

considered bad practice because they may lead to program crashes, which

are usually accompanied by insufficient or misleading error messages.

Code Location:

Note: only unwraps introduced by the changes in scope are listed, jus-

tified usages such as in tests were excluded.

Listing 1

./banks -server/src/banks_server.rs:110 .unwrap();

./ bucket_map/src/bucket.rs:283 self.index.allocate(

ë elem_ix , elem_uid , is_resizing).unwrap();

./ bucket_map/src/bucket_storage.rs:161 hdr.as_mut ()

ë .unwrap()

./core/src/broadcast_stage/broadcast_utils.rs:36 32 *

ë ShredData :: capacity (/* merkle_proof_size */ None).unwrap() as u64;

./core/src/broadcast_stage/standard_broadcast_run.rs:72

ë .unwrap();

./core/src/broadcast_stage/standard_broadcast_run.rs:101 let (

ë slot , parent_slot) = self.current_slot_and_parent.unwrap();

./core/src/broadcast_stage/standard_broadcast_run.rs:120 Shredder

ë ::new(slot , parent_slot , reference_tick , self.shred_version)

ë .unwrap();

./core/src/cluster_info_vote_listener.rs:278 .unwrap();

./core/src/cluster_info_vote_listener.rs:392 .unwrap()

./core/src/cluster_info_vote_listener.rs:396 .unwrap()

./core/src/ledger_cleanup_service.rs:98 .unwrap();

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

./core/src/ledger_cleanup_service.rs:144 for (i, (slot , meta))

ë in blockstore.slot_meta_iterator (0).unwrap().enumerate () {

./core/src/ledger_cleanup_service.rs:244 *blockstore.

ë lowest_cleanup_slot.write ().unwrap() = lowest_cleanup_slot;

./core/src/replay_stage.rs:102 .unwrap();

./core/src/replay_stage.rs :1717 let mut w_replay_stats =

ë replay_stats.write ().unwrap();

./core/src/replay_stage.rs :1718 let mut w_replay_progress =

ë replay_progress.write ().unwrap();

./core/src/replay_stage.rs :2253 let mut progress_lock =

ë progress.write ().unwrap();

./core/src/replay_stage.rs :2265 let bank = &bank_forks.read()

ë .unwrap().get(bank_slot).unwrap();

./core/src/replay_stage.rs :2349 let bank = &bank_forks.read

ë ().unwrap().get(bank_slot).unwrap();

./core/src/replay_stage.rs :2427 let bank = &bank_forks.read

ë ().unwrap().get(bank_slot).unwrap();

./core/src/replay_stage.rs :2436 bank_forks.read().unwrap().

ë root(),

./core/src/replay_stage.rs :2462 let r_replay_stats

ë = replay_stats.read().unwrap();

./core/src/replay_stage.rs :2464 let

ë r_replay_progress = replay_progress.read().unwrap();

./core/src/replay_stage.rs :2533 let

ë block_metadata_notifier = block_metadata_notifier.read().unwrap();

./core/src/replay_stage.rs :2601 let active_bank_slots =

ë bank_forks.read().unwrap().active_bank_slots ();

./core/src/replay_stage.rs :2612 .unwrap()

./core/src/replay_stage.rs :2614 .unwrap()

./core/src/replay_stage.rs :2901 &bank_forks.read()

ë .unwrap(),

./core/src/replay_stage.rs :3127 .get(

ë current_leader_slot.unwrap())

./core/src/replay_stage.rs :3272 .unwrap()

./core/src/retransmit_stage.rs:369 .unwrap();

./core/src/serve_repair.rs:493 let root_bank = self.bank_forks

ë .read().unwrap().root_bank ();

./core/src/serve_repair.rs:599 .unwrap()

./core/src/serve_repair.rs :1192 slot = meta.parent_slot.unwrap();

./core/src/snapshot_packager_service.rs:54 renice_this_thread(

ë snapshot_config.packager_thread_niceness_adj).unwrap();

./core/src/system_monitor_service.rs:218 .map (|(label , val)| (

ë label.to_string (), val.parse::<u64 >().unwrap()))

./core/src/system_monitor_service.rs:376 .unwrap();

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

./core/src/tpu.rs:125 Some(bank_forks.read().unwrap().

ë get_vote_only_mode_signal ()),

./core/src/tpu.rs:170 .unwrap();

./core/src/tpu.rs:184 .unwrap();

./core/src/validator.rs:307 .unwrap(),

./core/src/validator.rs:713 *start_progress.write ().unwrap() =

ë ValidatorStartProgress :: StartingServices;

./core/src/validator.rs :1614 let previous_start_process

ë = *self.start_progress.read().unwrap();

./core/src/validator.rs :1615 *self.start_progress.write

ë ().unwrap() = ValidatorStartProgress :: LoadingLedger;

./core/src/validator.rs :1627 let slot =

ë bank_forks.read().unwrap().working_bank ().slot();

./core/src/validator.rs :1628 *

ë start_progress.write ().unwrap() =

./core/src/validator.rs :1633 .unwrap();

./core/src/validator.rs :1909 let bank = bank_forks.read()

ë .unwrap().working_bank ();

./core/src/validator.rs :1947 *start_progress.write ().unwrap()

ë =

./core/src/verified_vote_packets.rs:112 let vote_account_key

ë = self.vote_account_keys.pop().unwrap();

./core/src/verified_vote_packets.rs:225 let slot = vote.

ë last_voted_slot ().unwrap();

./core/src/verified_vote_packets.rs:283

ë validator_votes.remove (& smallest_key).unwrap();

./core/src/voting_service.rs:52 let rooted_bank =

ë bank_forks.read().unwrap().root_bank ().clone ();

./banks -server/src/banks_server.rs:110 .unwrap();

./ gossip/src/cluster_info.rs :1687 .unwrap();

./ gossip/src/cluster_info.rs :2565 .unwrap();

./ gossip/src/cluster_info.rs :2580 Builder ::new().name(

ë thread_name).spawn(run_consume).unwrap()

./ ledger/src/bank_forks_utils.rs:149 .unwrap()

./ ledger/src/bigtable_upload.rs:197 .unwrap()

./ ledger/src/blockstore.rs:95 .unwrap();

./ ledger/src/blockstore.rs:100 .unwrap();

./ ledger/src/shredder.rs:24 .unwrap();

./ ledger/src/shredder.rs:81 .unwrap();

./rpc/src/rpc_service.rs:387 .on_thread_start(move ||

ë renice_this_thread(rpc_niceness_adj).unwrap())

./rpc/src/rpc_service.rs:485 renice_this_thread(rpc_niceness_adj)

ë .unwrap();

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

./rpc/src/rpc_subscriptions.rs:574 let blockstore = Blockstore

ë ::open(& ledger_path).unwrap();

./ runtime/src/accounts_background_service.rs:248).unwrap();

./ runtime/src/accounts_db.rs :1713 .unwrap()

./ runtime/src/accounts_db.rs :1959 .unwrap(),

./ runtime/src/accounts_db.rs :3376 let mut list =

ë slot_stores.write ().unwrap();

./ runtime/src/accounts_index.rs :1361 lock.as_ref ().unwrap().

ë get_internal(pubkey , |entry| {

./ runtime/src/bank/sysvar_cache.rs:8 let mut sysvar_cache =

ë self.sysvar_cache.write ().unwrap();

./ runtime/src/bank_client.rs:317 .unwrap();

./ runtime/src/hardened_unpack.rs:341 sender.send(

ë entry_path_buf).unwrap();

./ runtime/src/in_mem_accounts_index.rs :1056 let mut

ë possible_evictions = self.possible_evictions.write ().unwrap();

./ runtime/src/in_mem_accounts_index.rs :1067 let map = self.

ë map_internal.read().unwrap();

./ runtime/src/in_mem_accounts_index.rs :1089

ë possible_evictions.get_possible_evictions ().unwrap()

./ runtime/src/read_only_accounts_cache.rs:114 let (pubkey ,

ë slot) = match self.queue.lock().unwrap().get_first () {

./ runtime/src/snapshot_utils.rs :1572 let open_file = || File::

ë open(& snapshot_tar).unwrap();

./ runtime/src/snapshot_utils.rs :1577 zstd:: stream ::read

ë :: Decoder ::new(BufReader ::new(open_file ())).unwrap(),

./ runtime/src/snapshot_utils.rs :1580 SharedBuffer ::new(

ë lz4:: Decoder ::new(BufReader ::new(open_file ())).unwrap())

./ runtime/src/verify_accounts_hash_in_background.rs:45 *self.

ë thread.lock().unwrap() = Some(start ());

./ runtime/src/verify_accounts_hash_in_background.rs:64 let mut

ë lock = self.thread.lock().unwrap();

./ runtime/src/verify_accounts_hash_in_background.rs:68 let

ë result = lock.take().unwrap().join().unwrap();

Risk Level:

Likelihood - 1

Impact - 1

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended not to use the unwrap function in the production

environment because its use causes panic! and may crash any affected

module, program or in the worst case the runtime without verbose error

messages. Crashing the system will result in a loss of availability

and, in some cases, even private information stored in the state. Some

alternatives are possible, such as propagating the error with ? instead

of unwrapping, or using the error-chain crate for errors.

Remediation Plan:

ACKNOWLEDGED : The Solana team acknowledged this issue.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

18

MANUAL TESTING

In the manual testing phase, the following scenarios were simulated.

The scenarios listed below were selected based on the severity of the

vulnerabilities Halborn was testing the program for.

4.1 LOSS OF FUNDS

Description:

Commit 48862c575a1f62f2d010d7568cbe0279b2e51f62 introduced a new

Redelegate instruction to the pre-existing Stake program. When a stake

account is redelegated, the delegated lamports from the source stake

account are transferred to a new stake account. The new instruction was

tested to ensure that accounts were properly validated, staked lamports

cannot be locked in edge-cases and implemented business logic cannot be

bypassed.

Results:

No code vulnerabilities were identified.

4.2 CONSENSUS

Description:

Commit 8d69e8d44772d2c2be77e99cca8b685e2ce4ba66 introduced

CompactVoteStateUpdate and CompactUpdateVoteStateSwitch instruc-

tions. Several tests were performed to ensure that malicious compacted

vote state updates did not have any impact over the consensus mechanism.

19

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/commit/48862c575a1f62f2d010d7568cbe0279b2e51f62
https://github.com/solana-labs/solana/commit/8d69e8d44772d2c2be77e99cca8b685e2ce4ba66

Results:

No code vulnerabilities were identified.

4.3 BUSINESS PROCESS DESIGN

Description:

Commit bf225bae738c071bd02ec79ec0b8ddfc1679a766 implements additional

restrictions over RentPaying accounts. Before RentPaying accounts could

continue as rent paying unless they were resized, in such case they

would need to be rent exempt. However, there was still an edge-case

that was possible, RentPaying accounts stay as rent paying if they were

credited below the rent-exempt threshold. We performed several tests to

ensure that the implemented workflow could not be circumvented.

Results:

No code vulnerabilities were identified.

4.4 DENIAL OF SERVICE

Description:

In pull request 26851 it was identified that the runtime may misidentify

stake accounts as newly created accounts and delete them causing the bank

to crash. This and similar scenarios we’re tested to ensure the fix

20

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/commit/bf225bae738c071bd02ec79ec0b8ddfc1679a766
https://github.com/solana-labs/solana/pull/26851

resolved the issue.

Results:

No code vulnerabilities were identified.

21

MA
NU

AL
TE

ST
IN

G

22

AUTOMATED TESTING

5.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-audit, a security scanner for vulnerabilities reported to the Rust-

Sec Advisory Database. All vulnerabilities published in https://crates.io

are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs

a scanning on Cargo.lock. Security Detections are only in scope. All

vulnerabilities shown here were already disclosed in the above report.

However, to better assist the developers maintaining this code, the au-

ditors are including the output with the dependencies tree, and this

is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results:

ID package Short Description

RUSTSEC-2020-0071 time Potential segfault in the time crate

RUSTSEC-2021-0139 ansi_term ansi_term is unmaintained

RUSTSEC-2020-0016 net2 net2 crate has been deprecated

RUSTSEC-2021-0127 serde_cbor serde_cbor is unmaintained

23

AU
TO

MA
TE

D
TE

ST
IN

G

https://github.com/time-rs/time/issues/293
https://rustsec.org/advisories/RUSTSEC-2021-0139
https://rustsec.org/advisories/RUSTSEC-2020-0016
https://rustsec.org/advisories/RUSTSEC-2021-0127

5.2 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.

Results:

Runtime

24

AU
TO

MA
TE

D
TE

ST
IN

G

25

AU
TO

MA
TE

D
TE

ST
IN

G

26

AU
TO

MA
TE

D
TE

ST
IN

G

27

AU
TO

MA
TE

D
TE

ST
IN

G

28

AU
TO

MA
TE

D
TE

ST
IN

G

29

AU
TO

MA
TE

D
TE

ST
IN

G

30

AU
TO

MA
TE

D
TE

ST
IN

G

31

AU
TO

MA
TE

D
TE

ST
IN

G

32

AU
TO

MA
TE

D
TE

ST
IN

G

33

AU
TO

MA
TE

D
TE

ST
IN

G

34

AU
TO

MA
TE

D
TE

ST
IN

G

35

AU
TO

MA
TE

D
TE

ST
IN

G

36

AU
TO

MA
TE

D
TE

ST
IN

G

37

AU
TO

MA
TE

D
TE

ST
IN

G

38

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	MANUAL TESTING
	LOSS OF FUNDS
	Description
	Results

	CONSENSUS
	Description
	Results

	BUSINESS PROCESS DESIGN
	Description
	Results

	DENIAL OF SERVICE
	Description
	Results

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results

