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EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Solana Foundation implemented a new dependency-less ELF parser, which is

replacing the goblin crate previously used.

Halborn conducted a security audit on the new ELF parser, beginning on

July 13th, 2022 and ending on August 4th, 2022 . The security assessment

was scoped to the new ELF parser implemented in the rbpf GitHub repository.

Commit hashes and further details can be found in the Scope section of

this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided 3 weeks for the engagement and assigned

1 full-time security engineer to audit the security of the code in scope.

The security engineer is a blockchain and smart contract security expert

with advanced penetration testing and smart contract hacking skills, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Identify potential security issues within the programs

In summary, Halborn did not identify any vulnerability affecting the

newly implemented ELF parser, only two informational recommendations

were presented, which have been partially addressed.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the program audit. While manual testing

is recommended to uncover flaws in logic, process, and implementation;
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automated testing techniques help enhance coverage of programs and can

quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Manual program code review and walkthrough to identify logic issues.

• Mapping out possible attack vectors.

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could led to arithmetic vulnerabilities.

• Finding unsafe Rust code usage (cargo-geiger).

• Active Fuzz testing (cargo-fuzz, honggfuzz).

• Scanning dependencies for known vulnerabilities (cargo audit).

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.
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2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL
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1.4 SCOPE

Code repositories:

1. Repository: rbpf

2. Pull Request: Introduce new ELF parser

3. Commit IDs:

• faa80cbc65d2004a4be93b4b9567c3698f8db2f4

• 93ca9059549aa55677315979e205d7e7a83cddde

• f39b0358dc295b8265ca90d8d99721057b4447d3

• dbd7b7a6180f01ebc4328f577acd7e6b3bdd72c8

• 1174f72bf5a953d1840d7f5e7e41e91fd7776ea2

• 8cfba85823cb7401621628ea1d74c18426b67e11

• dbee7d650e8a7988c11d74ad77f405a9f33d34b8

• 4fde0c40b2e651ed73d2b94d94d317a66e6c0005

• f26c59ec3e7592466c77bce1dcb18c14bfd2b8c2

• 287a8f5bbb17884f9970a53c923f1507925c67d4

• 68d8a91a5dfa789c0ace41091f25bd8a58b4594f

• e8140d1a84d7f988acd50e7a345b79e6b430e87e

• 1b640fa8a6cb9cb645f1670185cb71cd8867778a

• ed4099085b448d8f6be907a6a6d800018efea26b

• e1495f5cfbf79db0e11db735cf64ef906fdd87af

• dd189d421ec8fc4de8a5346ddbcabb4d0a99f931

• 6cf63d990071f1e3254df1283f37ea8d19e792c5

• ba52d2897eb0cb58d05d3cf9d7f077d3cce31955

• 8374d8405fcdf49d976981b3b7c3e92e4722c0a7

• ba30e0c80ecc3fa9d9ac1794b318050525ed6fb2

• ba30e0c80ecc3fa9d9ac1794b318050525ed6fb2

• ec84335e76b9087e6f1e65375c2ff51cfdca752a
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• eeb9f4613363bacf05db0f0c32a1b79e23bdc355

• 036937d821158af69919805eaec74b96d7dac7e8

• eceac86df2ed985244b13e27f840cac438aec8c5

• 5745ca80b225910d32f81ca163489b136bf113e5

• ebfc58cc372fd159e10399c7e8da4b7202c3bc82

• c096b6629cfdb3d764476fed3a91d1571f3e8bce

• eae90d13d0098fe61ee02189b05968da893682b5

• c2dd6a7a5ecaf2a905f7e7ccb8d574427efe21ef

• 7f801c2199aa03743ae9f27f07fa1ee247422464

Out-of-scope: External libraries and financial related attacks.
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2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 2

IM
PA
CT

LIKELIHOOD

(HAL-01)
(HAL-02)
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SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) WEAK DEFAULT VM
CONFIGURATION

Informational ACKNOWLEDGED

(HAL-02) POSSIBLE RUST PANICS DUE
TO UNSAFE UNWRAP USAGE

Informational FUTURE RELEASE
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FINDINGS & TECH
DETAILS



3.1 (HAL-01) WEAK DEFAULT VM
CONFIGURATION - INFORMATIONAL

Description:

In order to validate and load programs, it is necessary to provide a

valid vm::Config. The Config struct implements the Default trait, used

in debugging tools such as rbpf_cli, or solana_cli::program. Default

settings are not configured with the most strict options, thus Config::

default() can be inadvertently used, allowing corrupt ELF files. It is

important to note that when Config::default() was used in solana_cli::

program, reject_broken_elfs was explicitly set to true when it was not

necessary for backwards compatibility.

Code Location:

Listing 1: src/vm.rs (Line 245)

235 impl Default for Config {

236 fn default () -> Self {

237 Self {

238 max_call_depth: 20,

239 stack_frame_size: 4_096 ,

240 enable_stack_frame_gaps: true ,

241 instruction_meter_checkpoint_distance: 10000,

242 enable_instruction_meter: true ,

243 enable_instruction_tracing: false ,

244 enable_symbol_and_section_labels: false ,

245 reject_broken_elfs: false ,

246 noop_instruction_rate: 256,

247 sanitize_user_provided_values: true ,

248 encrypt_environment_registers: true ,

249 syscall_bpf_function_hash_collision: true ,

250 reject_callx_r10: true ,

251 dynamic_stack_frames: true ,

252 enable_sdiv: true ,

253 optimize_rodata: true ,

254 static_syscalls: true ,

255 enable_elf_vaddr: true ,

256 new_elf_parser: true ,
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257 }

258 }

259 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Use default configurations with the most restrictive settings, which can

be later overwritten if required.

Remediation Plan:

ACKNOWLEDGED: Config::Default() will not be changed since it is only used

as a development API and the runtime uses hardcoded values and includes

a warning against using Config::Default().
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3.2 (HAL-02) POSSIBLE RUST PANICS
DUE TO UNSAFE UNWRAP USAGE -
INFORMATIONAL

Description:

The use of helper methods in Rust, such as unwrap, is allowed in dev and

testing environment because those methods are supposed to throw an error

(also known as panic!) when called on Option::None or a Result which is

not Ok. However, keeping unwrap functions in production environment is

considered bad practice because they may lead to program crashes, which

are usually accompanied by insufficient or misleading error messages.

Code Location:

Listing 2

./jit.rs :947: let mut diversification_rng = SmallRng ::

ë from_rng(rand:: thread_rng ()).unwrap();

./ static_analysis.rs :191: self.cfg_nodes.get_mut (&

ë source).unwrap().destinations = destinations.clone ();

./ static_analysis.rs :196: .unwrap()

./ static_analysis.rs :341: self.instructions.

ë last().unwrap().ptr

./ static_analysis.rs :383: [self.

ë cfg_nodes.get(destination).unwrap().instructions.end]

./ static_analysis.rs :458: let mut function_start = *

ë function_iter.next().unwrap();

./ static_analysis.rs :463: function_start = *

ë function_iter.next().unwrap();

./ static_analysis.rs :468: self.instructions.

ë last().unwrap().ptr + 1

./ static_analysis.rs :561: self.instructions.last()

ë .unwrap().ptr + 1

./ static_analysis.rs :630: let dynamic_analysis =

ë dynamic_analysis.unwrap();

./ static_analysis.rs :700: let cfg_node = self.cfg_nodes

ë .get(&node.cfg_node).unwrap();

./ static_analysis.rs :705: .unwrap()
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./ static_analysis.rs :747: let cfg_node = self.cfg_nodes

ë .get_mut (&node.cfg_node).unwrap();

./ static_analysis.rs :780: super_root.

ë destinations.push(first_node.unwrap());

./ static_analysis.rs :787: let cfg_node = self.cfg_nodes

ë .get_mut(v).unwrap();

./ static_analysis.rs :825: .unwrap()

./ static_analysis.rs :843: let mut cfg_node =

ë self.cfg_nodes.get_mut(b).unwrap();

./ static_analysis.rs :859: let dominator_cfg_node = self

ë .cfg_nodes.get_mut (&p).unwrap();

./ static_analysis.rs :1084: .unwrap(),

./ static_analysis.rs :1116: .unwrap();

./ call_frames.rs:37: stack.resize(stack_len , 0).unwrap();

./ elf_parser_glue.rs :266: ei_mag: h.e_ident [0..4].

ë try_into ().unwrap(),

./ elf_parser/mod.rs :495: self.

ë section_names_section_header.unwrap(),

./ elf_parser/mod.rs :499: .unwrap();

./ elf_parser/mod.rs :504: let symbol_table = self.

ë get_symbol_table_of_section(section_header).unwrap();

./ elf_parser/mod.rs :510: self.

ë symbol_names_section_header.unwrap(),

./ elf_parser/mod.rs :514: .unwrap();

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended not to use the unwrap function in the production

environment because its use causes panic! and may crash the contract

without verbose error messages. Crashing the system will result in a

loss of availability and, in some cases, even private information stored

in the state. Some alternatives are possible, such as propagating the

error with ? instead of unwrapping, or using the error-chain crate for

errors.
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Remediation Plan:

PENDING: Solana Foundation stated that most unwrap functions were present

in debug and off-chain code, one call is in the JIT code and will be

fixed in a future release.
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4.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of well-

known security issues and vulnerabilities. Among the tools used was cargo

-audit, a security scanner for vulnerabilities reported to the RustSec

Advisory Database. All vulnerabilities published in https://crates.io

are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs

a scanning on Cargo.lock. Security Detections are only in scope. All

vulnerabilities shown here were already disclosed in the above report.

However, to better assist the developers maintaining this code, the

auditors are including the output with the dependencies tree, and this

is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results:

No vulnerabilities were identified.
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4.2 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.
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Results:

21

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results



