
Solana Foundation
- ELF Parser

Solana Program Security Audit

Prepared by: Halborn

Date of Engagement: July 13th, 2022 - August 4th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) WEAK DEFAULT VM CONFIGURATION - INFORMATIONAL 13

Description 13

Code Location 13

Risk Level 14

Recommendation 14

Remediation Plan 14

3.2 (HAL-02) POSSIBLE RUST PANICS DUE TO UNSAFE UNWRAP USAGE -

INFORMATIONAL 15

Description 15

Code Location 15

Risk Level 16

Recommendation 16

Remediation Plan 17

4 AUTOMATED TESTING 18

4.1 AUTOMATED ANALYSIS 19

1



Description 19

Results 19

4.2 UNSAFE RUST CODE DETECTION 20

Description 20

Results 21

2



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 7/28/2022 Guillermo Álvarez

0.2 Document Updates 07/29/2022 Guillermo Álvarez

0.3 Final Draft 08/04/2022 Guillermo Álvarez

0.4 Draft Review 08/04/2022 Gabi Urrutia

1.0 Remediation Plan 08/15/2022 Guillermo Álvarez

1.1 Remediation Plan Review 08/16/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Guillermo Álvarez Halborn Guillermo.Alvarez@halborn.com

3

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Guillermo.Alvarez@halborn.com


4

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Solana Foundation implemented a new dependency-less ELF parser, which is

replacing the goblin crate previously used.

Halborn conducted a security audit on the new ELF parser, beginning on

July 13th, 2022 and ending on August 4th, 2022 . The security assessment

was scoped to the new ELF parser implemented in the rbpf GitHub repository.

Commit hashes and further details can be found in the Scope section of

this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided 3 weeks for the engagement and assigned

1 full-time security engineer to audit the security of the code in scope.

The security engineer is a blockchain and smart contract security expert

with advanced penetration testing and smart contract hacking skills, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Identify potential security issues within the programs

In summary, Halborn did not identify any vulnerability affecting the

newly implemented ELF parser, only two informational recommendations

were presented, which have been partially addressed.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the program audit. While manual testing

is recommended to uncover flaws in logic, process, and implementation;

5

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/rbpf


automated testing techniques help enhance coverage of programs and can

quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Manual program code review and walkthrough to identify logic issues.

• Mapping out possible attack vectors.

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could led to arithmetic vulnerabilities.

• Finding unsafe Rust code usage (cargo-geiger).

• Active Fuzz testing (cargo-fuzz, honggfuzz).

• Scanning dependencies for known vulnerabilities (cargo audit).

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

6

EX
EC

UT
IV

E
OV

ER
VI

EW



2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

Code repositories:

1. Repository: rbpf

2. Pull Request: Introduce new ELF parser

3. Commit IDs:

• faa80cbc65d2004a4be93b4b9567c3698f8db2f4

• 93ca9059549aa55677315979e205d7e7a83cddde

• f39b0358dc295b8265ca90d8d99721057b4447d3

• dbd7b7a6180f01ebc4328f577acd7e6b3bdd72c8

• 1174f72bf5a953d1840d7f5e7e41e91fd7776ea2

• 8cfba85823cb7401621628ea1d74c18426b67e11

• dbee7d650e8a7988c11d74ad77f405a9f33d34b8

• 4fde0c40b2e651ed73d2b94d94d317a66e6c0005

• f26c59ec3e7592466c77bce1dcb18c14bfd2b8c2

• 287a8f5bbb17884f9970a53c923f1507925c67d4

• 68d8a91a5dfa789c0ace41091f25bd8a58b4594f

• e8140d1a84d7f988acd50e7a345b79e6b430e87e

• 1b640fa8a6cb9cb645f1670185cb71cd8867778a

• ed4099085b448d8f6be907a6a6d800018efea26b

• e1495f5cfbf79db0e11db735cf64ef906fdd87af

• dd189d421ec8fc4de8a5346ddbcabb4d0a99f931

• 6cf63d990071f1e3254df1283f37ea8d19e792c5

• ba52d2897eb0cb58d05d3cf9d7f077d3cce31955

• 8374d8405fcdf49d976981b3b7c3e92e4722c0a7

• ba30e0c80ecc3fa9d9ac1794b318050525ed6fb2

• ba30e0c80ecc3fa9d9ac1794b318050525ed6fb2

• ec84335e76b9087e6f1e65375c2ff51cfdca752a

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/rbpf/
https://github.com/solana-labs/rbpf/pull/348
https://github.com/solana-labs/rbpf/pull/348/commits/faa80cbc65d2004a4be93b4b9567c3698f8db2f4
https://github.com/solana-labs/rbpf/pull/348/commits/93ca9059549aa55677315979e205d7e7a83cddde
https://github.com/solana-labs/rbpf/pull/348/commits/f39b0358dc295b8265ca90d8d99721057b4447d3
https://github.com/solana-labs/rbpf/pull/348/commits/dbd7b7a6180f01ebc4328f577acd7e6b3bdd72c8
https://github.com/solana-labs/rbpf/pull/348/commits/1174f72bf5a953d1840d7f5e7e41e91fd7776ea2
https://github.com/solana-labs/rbpf/pull/348/commits/8cfba85823cb7401621628ea1d74c18426b67e11
https://github.com/solana-labs/rbpf/pull/348/commits/dbee7d650e8a7988c11d74ad77f405a9f33d34b8
https://github.com/solana-labs/rbpf/pull/348/commits/4fde0c40b2e651ed73d2b94d94d317a66e6c0005
https://github.com/solana-labs/rbpf/pull/348/commits/f26c59ec3e7592466c77bce1dcb18c14bfd2b8c2
https://github.com/solana-labs/rbpf/pull/348/commits/287a8f5bbb17884f9970a53c923f1507925c67d4
https://github.com/solana-labs/rbpf/pull/348/commits/68d8a91a5dfa789c0ace41091f25bd8a58b4594f
https://github.com/solana-labs/rbpf/pull/348/commits/e8140d1a84d7f988acd50e7a345b79e6b430e87e
https://github.com/solana-labs/rbpf/pull/348/commits/1b640fa8a6cb9cb645f1670185cb71cd8867778a
https://github.com/solana-labs/rbpf/pull/348/commits/ed4099085b448d8f6be907a6a6d800018efea26b
https://github.com/solana-labs/rbpf/pull/348/commits/e1495f5cfbf79db0e11db735cf64ef906fdd87af
https://github.com/solana-labs/rbpf/pull/348/commits/dd189d421ec8fc4de8a5346ddbcabb4d0a99f931
https://github.com/solana-labs/rbpf/pull/348/commits/6cf63d990071f1e3254df1283f37ea8d19e792c5
https://github.com/solana-labs/rbpf/pull/348/commits/ba52d2897eb0cb58d05d3cf9d7f077d3cce31955
https://github.com/solana-labs/rbpf/pull/348/commits/8374d8405fcdf49d976981b3b7c3e92e4722c0a7
https://github.com/solana-labs/rbpf/pull/348/commits/ba30e0c80ecc3fa9d9ac1794b318050525ed6fb2
https://github.com/solana-labs/rbpf/pull/348/commits/ba30e0c80ecc3fa9d9ac1794b318050525ed6fb2
https://github.com/solana-labs/rbpf/pull/348/commits/ec84335e76b9087e6f1e65375c2ff51cfdca752a


• eeb9f4613363bacf05db0f0c32a1b79e23bdc355

• 036937d821158af69919805eaec74b96d7dac7e8

• eceac86df2ed985244b13e27f840cac438aec8c5

• 5745ca80b225910d32f81ca163489b136bf113e5

• ebfc58cc372fd159e10399c7e8da4b7202c3bc82

• c096b6629cfdb3d764476fed3a91d1571f3e8bce

• eae90d13d0098fe61ee02189b05968da893682b5

• c2dd6a7a5ecaf2a905f7e7ccb8d574427efe21ef

• 7f801c2199aa03743ae9f27f07fa1ee247422464

Out-of-scope: External libraries and financial related attacks.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/rbpf/pull/348/commits/eeb9f4613363bacf05db0f0c32a1b79e23bdc355
https://github.com/solana-labs/rbpf/pull/348/commits/036937d821158af69919805eaec74b96d7dac7e8
https://github.com/solana-labs/rbpf/pull/348/commits/eceac86df2ed985244b13e27f840cac438aec8c5
https://github.com/solana-labs/rbpf/pull/348/commits/5745ca80b225910d32f81ca163489b136bf113e5
https://github.com/solana-labs/rbpf/pull/348/commits/ebfc58cc372fd159e10399c7e8da4b7202c3bc82
https://github.com/solana-labs/rbpf/pull/348/commits/c096b6629cfdb3d764476fed3a91d1571f3e8bce
https://github.com/solana-labs/rbpf/pull/348/commits/eae90d13d0098fe61ee02189b05968da893682b5
https://github.com/solana-labs/rbpf/pull/348/commits/c2dd6a7a5ecaf2a905f7e7ccb8d574427efe21ef
https://github.com/solana-labs/rbpf/pull/348/commits/7f801c2199aa03743ae9f27f07fa1ee247422464


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 2

IM
PA
CT

LIKELIHOOD

(HAL-01)
(HAL-02)

10

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) WEAK DEFAULT VM
CONFIGURATION

Informational ACKNOWLEDGED

(HAL-02) POSSIBLE RUST PANICS DUE
TO UNSAFE UNWRAP USAGE

Informational FUTURE RELEASE

11

EX
EC

UT
IV

E
OV

ER
VI

EW



12

FINDINGS & TECH
DETAILS



3.1 (HAL-01) WEAK DEFAULT VM
CONFIGURATION - INFORMATIONAL

Description:

In order to validate and load programs, it is necessary to provide a

valid vm::Config. The Config struct implements the Default trait, used

in debugging tools such as rbpf_cli, or solana_cli::program. Default

settings are not configured with the most strict options, thus Config::

default() can be inadvertently used, allowing corrupt ELF files. It is

important to note that when Config::default() was used in solana_cli::

program, reject_broken_elfs was explicitly set to true when it was not

necessary for backwards compatibility.

Code Location:

Listing 1: src/vm.rs (Line 245)

235 impl Default for Config {

236 fn default () -> Self {

237 Self {

238 max_call_depth: 20,

239 stack_frame_size: 4_096 ,

240 enable_stack_frame_gaps: true ,

241 instruction_meter_checkpoint_distance: 10000,

242 enable_instruction_meter: true ,

243 enable_instruction_tracing: false ,

244 enable_symbol_and_section_labels: false ,

245 reject_broken_elfs: false ,

246 noop_instruction_rate: 256,

247 sanitize_user_provided_values: true ,

248 encrypt_environment_registers: true ,

249 syscall_bpf_function_hash_collision: true ,

250 reject_callx_r10: true ,

251 dynamic_stack_frames: true ,

252 enable_sdiv: true ,

253 optimize_rodata: true ,

254 static_syscalls: true ,

255 enable_elf_vaddr: true ,

256 new_elf_parser: true ,

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



257 }

258 }

259 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Use default configurations with the most restrictive settings, which can

be later overwritten if required.

Remediation Plan:

ACKNOWLEDGED: Config::Default() will not be changed since it is only used

as a development API and the runtime uses hardcoded values and includes

a warning against using Config::Default().

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana/blob/master/programs/bpf_loader/src/lib.rs#L186


3.2 (HAL-02) POSSIBLE RUST PANICS
DUE TO UNSAFE UNWRAP USAGE -
INFORMATIONAL

Description:

The use of helper methods in Rust, such as unwrap, is allowed in dev and

testing environment because those methods are supposed to throw an error

(also known as panic!) when called on Option::None or a Result which is

not Ok. However, keeping unwrap functions in production environment is

considered bad practice because they may lead to program crashes, which

are usually accompanied by insufficient or misleading error messages.

Code Location:

Listing 2

./jit.rs :947: let mut diversification_rng = SmallRng ::

ë from_rng(rand:: thread_rng ()).unwrap();

./ static_analysis.rs :191: self.cfg_nodes.get_mut (&

ë source).unwrap().destinations = destinations.clone ();

./ static_analysis.rs :196: .unwrap()

./ static_analysis.rs :341: self.instructions.

ë last().unwrap().ptr

./ static_analysis.rs :383: [self.

ë cfg_nodes.get(destination).unwrap().instructions.end]

./ static_analysis.rs :458: let mut function_start = *

ë function_iter.next().unwrap();

./ static_analysis.rs :463: function_start = *

ë function_iter.next().unwrap();

./ static_analysis.rs :468: self.instructions.

ë last().unwrap().ptr + 1

./ static_analysis.rs :561: self.instructions.last()

ë .unwrap().ptr + 1

./ static_analysis.rs :630: let dynamic_analysis =

ë dynamic_analysis.unwrap();

./ static_analysis.rs :700: let cfg_node = self.cfg_nodes

ë .get(&node.cfg_node).unwrap();

./ static_analysis.rs :705: .unwrap()

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



./ static_analysis.rs :747: let cfg_node = self.cfg_nodes

ë .get_mut (&node.cfg_node).unwrap();

./ static_analysis.rs :780: super_root.

ë destinations.push(first_node.unwrap());

./ static_analysis.rs :787: let cfg_node = self.cfg_nodes

ë .get_mut(v).unwrap();

./ static_analysis.rs :825: .unwrap()

./ static_analysis.rs :843: let mut cfg_node =

ë self.cfg_nodes.get_mut(b).unwrap();

./ static_analysis.rs :859: let dominator_cfg_node = self

ë .cfg_nodes.get_mut (&p).unwrap();

./ static_analysis.rs :1084: .unwrap(),

./ static_analysis.rs :1116: .unwrap();

./ call_frames.rs:37: stack.resize(stack_len , 0).unwrap();

./ elf_parser_glue.rs :266: ei_mag: h.e_ident [0..4].

ë try_into ().unwrap(),

./ elf_parser/mod.rs :495: self.

ë section_names_section_header.unwrap(),

./ elf_parser/mod.rs :499: .unwrap();

./ elf_parser/mod.rs :504: let symbol_table = self.

ë get_symbol_table_of_section(section_header).unwrap();

./ elf_parser/mod.rs :510: self.

ë symbol_names_section_header.unwrap(),

./ elf_parser/mod.rs :514: .unwrap();

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended not to use the unwrap function in the production

environment because its use causes panic! and may crash the contract

without verbose error messages. Crashing the system will result in a

loss of availability and, in some cases, even private information stored

in the state. Some alternatives are possible, such as propagating the

error with ? instead of unwrapping, or using the error-chain crate for

errors.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

PENDING: Solana Foundation stated that most unwrap functions were present

in debug and off-chain code, one call is in the JIT code and will be

fixed in a future release.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



18

AUTOMATED TESTING



4.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of well-

known security issues and vulnerabilities. Among the tools used was cargo

-audit, a security scanner for vulnerabilities reported to the RustSec

Advisory Database. All vulnerabilities published in https://crates.io

are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs

a scanning on Cargo.lock. Security Detections are only in scope. All

vulnerabilities shown here were already disclosed in the above report.

However, to better assist the developers maintaining this code, the

auditors are including the output with the dependencies tree, and this

is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results:

No vulnerabilities were identified.

19

AU
TO

MA
TE

D
TE

ST
IN

G



4.2 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.

20

AU
TO

MA
TE

D
TE

ST
IN

G



Results:

21

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan


	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results



