
Audit
Solana Core

Presented by:

OtterSec contact@osec.io

Blas Kojusner blas@osec.io

Alec Petridis alec@osec.io

Harrison Green hgarrereyn@osec.io

Robert Chen notdeghost@osec.io

mailto:contact@osec.io
mailto:blas@osec.io
mailto:alec@osec.io
mailto:hgarrereyn@osec.io
mailto:notdeghost@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Architecture 4
Address Lookup Table Program . 4
Versioned Transactions . 4
Security Considerations . 5

04 Findings 6

05 General Findings 7
OS-SAT-SUG-00 | Unnecessary Padding Field . 8
OS-SAT-SUG-01 | Replace Saturating Arithmetic . 9
OS-SAT-SUG-02 | Transaction Address Verification . 10
OS-SAT-SUG-03 | Metadata Deserialization . 11

Appendices

A Program Files 12

B Procedure 13

C Implementation Security Checklist 14

D Vulnerability Rating Scale 16

© 2022 OtterSec LLC. All Rights Reserved. 1 / 16

01 | Executive Summary

Overview

OtterSec performed an assessment of the Versioned Transaction implementation and Address Lookup
Table program. This assessment was conducted between August 1st and August 19th, 2022.

The audit scope consisted of a review of the pull requests outlined in the Core Implementation in issue
#26391.

After delivering our audit report, we worked closely with the team over to streamline patches and confirm
remediation.

We delivered the final report August 23rd, 2022.

Key Findings

The following is a summary of the major findings in this audit.

• 4 findings total

© 2022 OtterSec LLC. All Rights Reserved. 2 / 16

https://github.com/solana-labs/solana/issues/26391

02 | Scope
The code was delivered to us in several pull requests connected to issue #26391.

There were several components included in this audit. A brief description is as follows:

Name Description

versioned transactions A new upgradeable transaction format intended to replace the current
(legacy) format. V0 of this format also supports address table references.

address-lookup-table A new native on-chain program that contains instructions for managing ad-
dress tables.

runtime Modifications to runtime code to add support for address tables at the bank-
ing stage.

© 2022 OtterSec LLC. All Rights Reserved. 3 / 16

https://github.com/solana-labs/solana/issues/26391

03 | Architecture

Address Lookup Table Program

Solana’s networking stack uses an MTU size of 1280 bytes, which leaves 1232 bytes for packet data like
serialized transactions. This constraint has led developers building applications on Solana to store state
temporarily on-chain to consume it in a later transaction.

This workaround does not scale well when developers compose many on-chain programs in a single
atomic transaction since more composition means more account inputs, each of which take up 32 bytes.

The address lookup table program has been proposed to increase the account limit in a single transaction.
This programallows aprotocol developer or an enduser to create collections of related addresses on-chain
for concise use in a transaction’s account inputs.

Once the addresses are stored on-chain, they can be succinctly referenced in a transaction header using a
1-byte u8 index rather than the full 32-byte address. The address lookup tables are rent-exempt when
initialized and after each time new addresses are appended.

Once an address lookup table is no longer needed, it can be deactivated and closed to have its rent
balance reclaimed. Address lookup tables can be deactivated at any time but can continue to be used by
transactions until the deactivation slot is no longer present in the slot hashes sysvar.

Versioned Transactions

There is a new transaction format which supports the use of on-chain address lookup tables to efficiently
loadmore accounts into a single transaction. Considering the transaction types may need to be upgraded
in the future, the format is an upgradeable versioned-transaction format.

Thenew format (which supports address table lookups) isVersionedMessage::V0 and theold format
is VersionedMessage::legacy.

The v0 transaction format can be distinguished from the legacy transaction format by setting the upper
bit of theu8message headernum_required_signatures. While the legacy formatwas not designed
to be upgradeable, those transactions should never have this bit set normally and therefore it can be used
to distinguish between the two formats.

© 2022 OtterSec LLC. All Rights Reserved. 4 / 16

Solana Core Audit 03 | Architecture

Security Considerations

Lookup Table Immutability

While traditional account references contain an explicit account public key, address table lookups perform
account retrieval indirectly using an address table account and a u8 account index.

In this second format, clients need to be assured that the contents of the address table at that particular
index have not changed in the time between when the transaction was sent to the network and when the
transaction was executed and included in the blockchain.

Therefore, an address at a particular index in an address table should be immutable for the duration of its
lifetime. Additionally, it should not be possible to close and initialize a new address table at the same
address (which may contain different values).

In Solana, this consideration is implemented by requiring address tables accounts to be PDAs using a
recent slot hash as part of the seed. Address tables can not be closed until the deactivation slot hash is
outside of recent history at which point it is not possible to re-initialize a new address table at the same
address. Additionally, address tables are append-only and addresses can not be modified.

Resource Consumption

Enabling more account inputs in a transaction will require more resource consumption. Before address
tables are enabled, transaction-wide compute limits on data reads and write locks are required.

Front Running

If the addresses listed within an address lookup table are mutable, front running attacks could modify
which addresses are resolved for a later transaction. As a result, address lookup tables are append-only
andmay only be closed if it is no longer possible to create a new lookup table at the same derived address.

Duplicate Accounts

Transactions may not load an account more than once whether directly through account_keys or
indirectly through address_table_lookups.

© 2022 OtterSec LLC. All Rights Reserved. 5 / 16

04 | Findings
Overall, we report 4 findings.

General findings don’t have an immediate impact but will help mitigate future vulnerabilities.

The below chart displays the findings by severity.

Severity Count

Critical 0
High 0

Medium 0
Low 0

Informational 4

© 2022 OtterSec LLC. All Rights Reserved. 6 / 16

05 | General Findings
Here we present a discussion of general findings during our audit. While these findings do not present
an immediate security impact, they do represent antipatterns and could introduce a vulnerability in the
future.

ID Status Description

OS-SAT-SUG-00 TODO Unnecessary padding field in lookup table

OS-SAT-SUG-01 TODO Use checked arithmetic instead of saturating arithmetic

OS-SAT-SUG-02 TODO Transactions cannot verify addresses loaded from lookup tables

OS-SAT-SUG-03 TODO Serialize metadata instead of the whole account data

© 2022 OtterSec LLC. All Rights Reserved. 7 / 16

Solana Core Audit 05 | General Findings

OS-SAT-SUG-00 | Unnecessary Padding Field

Description

The padding field in the LookupTableMeta struct is not necessary since data is bincode serialized.
Enforcing pubkey data to start at LOOKUP_TABLE_META_SIZE already achieves 8-byte alignment.

programs/address-lookup-table/src/state.rs RUST

40 // Padding to keep addresses 8-byte aligned
41 pub _padding: u16,
42 // Raw list of addresses follows this serialized structure in
43 // the account's data, starting from `LOOKUP_TABLE_META_SIZE`.

Remediation

It is suggested to remove the parameter.

© 2022 OtterSec LLC. All Rights Reserved. 8 / 16

Solana Core Audit 05 | General Findings

OS-SAT-SUG-01 | Replace Saturating Arithmetic

Description

Useof saturatingarithmetic (saturating_add,saturating_sub,saturating_mul, etc...) causes
values to “saturate” at the maximum or minimum possible representations.

Saturating arithmetic in the program analyzed is used to calculate lookup table size and the required lam-
ports used for rent on an address table. During our analysis, we have found that all saturating arithmetic
cases explored were enforced by auxiliary code before or after the arithmetic.

For example, in src/processor.rs, the value for new_table_addresses_len is calculated by
adding the length of the new addresses in the table with the length of the current addresses in the table.
This value is then checked against the constant LOOKUP_TABLE_MAX_ADDRESSES, however there
should not be a case where it will overflow due to these checks.

programs/address-lookup-table/src/processor.rs RUST

260 let new_table_addresses_len = lookup_table
261 .addresses
262 .len()
263 .saturating_add(new_addresses.len());

Remediation

Replace saturating math with checked operations or plain math.

© 2022 OtterSec LLC. All Rights Reserved. 9 / 16

Solana Core Audit 05 | General Findings

OS-SAT-SUG-02 | Transaction Address Verification

Description

The current transaction format adds support for lookup tables so that more addresses can be loaded in
a single transaction without serializing the 32-byte address for each account. While traditional account
references contain explicit account pubkeys, transactions which use adderess-tables perform account
lookup indirectly.

An end-user may wish to explore which addresses were used in a particular instruction. For example,
information about transactions is cached andmade available through several off-chain resources (such
as Solana Explorer). These tools allow end-users to gain insight into the activity on the blockchain and
perform various types of analyses. It is particularly important to be able to observe which accounts were
referenced in a specific transaction.

While observing account references is straightforward with the legacy transaction format (since this data
is included in the header), it becomes more difficult with address tables. Specifically there are two cases:

1. While an address table is still open, a user can simply observe the state in the address table (which
is immutable) in order to figure out which account was used.

2. After an address table has been closed, a user will need to replay all the transactions which con-
structed such an address table in order to determine its state at the time of the target transaction.

For case 2, this may be impractical or difficult for “light-node” users who may simply want to retrieve
cached information from validators and validate portions of the data offline.

For example, if auser knows the transactionhash for aparticular transaction, they canvalidate the contents
of the transaction (which may have been provided by an untrusted party) by simply re-computing the
hash. This user can subsequently be assured that the contents of the transaction header and embedded
instructions are correct.

Currently, however there is no mechanism to validate the contents of an address-table. The only informa-
tion included in the actual transaction is the address of the address-table and the indexes used by the
transaction. Critically, there is a piece of information missing that could be used to validate the contents
of such a table.

One easy approach could be to include both the address table pubkey and a hash of the address-table state
inside the transaction header. Using the address table hash, an end user could validate which particular
accounts were referenced if that information was provided by a separate party.

Remediation

Introduce a new transaction version format that includes a hash on the _contents_ for each address
table lookup so that the loaded addresses can be verified by the signer even after the lookup table is
closed by simply comparing the hashes in question. The issue is being tracked at #26989.

© 2022 OtterSec LLC. All Rights Reserved. 10 / 16

https://github.com/solana-labs/solana/issues/26989

Solana Core Audit 05 | General Findings

OS-SAT-SUG-03 | Metadata Deserialization

Description

Under AddressLookupTable::deserialize, the whole account data is treated as serializedmeta-
data when bincode::deserialize is invoked. This will treat the address data as serializedmetadata
which could potentially take upmore space than is allocated. This is currently not a vulnerability since the
types are included in the address-table metadata to prevent an overflow.

programs/address-lookup-table/src/state.rs RUST

190 /// Efficiently deserialize an address table without allocating
191 /// for stored addresses.
192 pub fn deserialize(data: &'a [u8]) -> Result<AddressLookupTable<'a>,

InstructionError> {↪→

193 let program_state: ProgramState =
194 bincode::deserialize(data).map_err(|_|

InstructionError::InvalidAccountData)?;↪→

Remediation

Only the metadata slice should be changed when bincode::deserialize is invoked to prevent
accidentally treating the address data as serialized metadata.

© 2022 OtterSec LLC. All Rights Reserved. 11 / 16

A | Program Files

Below are the files in scope for this audit and their corresponding SHA256 hashes.

programs
address-lookup-table
Cargo.toml 963b340668da608ecb4bfcc0b1891327
build.rs f62785b6e61c3862bd701f4f6abe6241
src

error.rs c95336aa2dc43b71f8cb8d843e50bc46
instruction.rs b4f0c05d634717f9a7b8e97a494c0961
lib.rs d5918a8ce2d6ac9640f671c235b208ce
processor.rs f8acecc60b8c517d0772f9a5d5cbdc59
state.rs a152d8def77bc9ffe45785cf79d75e26

runtime
src
accounts.rs fce2f79927f41addcd73699e25895456
bank

address_lookup_table.rs da185e2367c632ceb6b862f263edbdf8
sdk

program
src

message
versions
v0
mod.rs 7eb4a97ad27b353d5dc7424a83f90ca0

© 2022 OtterSec LLC. All Rights Reserved. 12 / 16

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an onchain program. In other words, there is no way to steal tokens or deny service,
ignoring any Solana specific quirks such as account ownership issues. An example of a design vulnerability
would be an onchain oracle which could bemanipulated by flash loans or large deposits.

On the other hand, auditing the implementation of the program requires a deep understanding of Solana’s
execution model. Some common implementation vulnerabilities include account ownership issues,
arithmetic overflows, and rounding bugs. For a non-exhaustive list of security issues we check for, see
Appendix C.

Implementation vulnerabilities tend to bemore “checklist” style. In contrast, design vulnerabilities require
a strong understanding of the underlying system and the various interactions: both with the user and
cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first.
In our audits, we always approach any target in a team of two. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2022 OtterSec LLC. All Rights Reserved. 13 / 16

C | Implementation Security Checklist

Unsafe arithmetic

Integer underflows or
overflows

Unconstrained input sizes could lead to integer over or underflows, causing
potentially unexpected behavior. Ensure that for unchecked arithmetic, all
integers are properly bounded.

Rounding Rounding should always be done against the user to avoid potentially ex-
ploitable off-by-one vulnerabilities.

Conversions Rust as conversions can cause truncation if the source value does not fit into
the destination type. While this is not undefined behavior, such truncation
could still lead to unexpected behavior by the program.

Account security

Account Ownership Account ownership should be properly checked to avoid type confusion
attacks. For Anchor, the safety of unchecked accounts should be clearly
justified and immediately obvious.

Accounts For non-Anchor programs, the type of the account should be explicitly vali-
dated to avoid type confusion attacks.

Signer Checks Privileged operations should ensure that the operation is signed by the
correct accounts.

PDA Seeds PDA seeds are uniquely chosen to differentiate between different object
classes, avoiding collision.

© 2022 OtterSec LLC. All Rights Reserved. 14 / 16

Solana Core Audit C | Implementation Security Checklist

Input validation

Timestamps Timestamp inputs should be properly validated against the current clock
time. Timestamps which are meant to be in the future should be explicitly
validated so.

Numbers Sane limits should be put on numerical input data to mitigate the risk of
unexpected over and underflows. Input data should be constrained to the
smallest size type possible, and upcasted for unchecked arithmetic.

Strings Strings should have sane size restrictions to prevent denial of service condi-
tions

Internal State If there is internal state, ensure that there is explicit validation on the input
account’s state before engaging in any state transitions. For example, only
open accounts should be eligible for closing.

Miscellaneous

Libraries Out of date libraries should not include any publicly disclosed vulnerabilities

Clippy cargo clippy is an effective linter to detect potential anti-patterns.

© 2022 OtterSec LLC. All Rights Reserved. 15 / 16

D | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities which immediately lead to loss of user funds with minimal precondi-
tions

Examples:

• Misconfigured authority/token account validation
• Rounding errors on token transfers

High Vulnerabilities which could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities which could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input cause computation limit exhaustion
• Forced exceptions preventing normal use

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation
• Uncaught Rust errors (vector out of bounds indexing)

© 2022 OtterSec LLC. All Rights Reserved. 16 / 16

	Executive Summary
	Overview
	Key Findings

	Scope
	Architecture
	Address Lookup Table Program
	Versioned Transactions
	Security Considerations

	Findings
	General Findings
	OS-SAT-SUG-00 | Unnecessary Padding Field
	OS-SAT-SUG-01 | Replace Saturating Arithmetic
	OS-SAT-SUG-02 | Transaction Address Verification
	OS-SAT-SUG-03 | Metadata Deserialization

	Appendices
	Program Files
	Procedure
	Implementation Security Checklist
	Vulnerability Rating Scale

