
Prepared for
HanakoMumei
Anza

Prepared by
Aaron Esau
Ethan Lee
Zellic

March 12, 2025

BPF Stake Program
Solana Application Security Assessment



BPF Stake Program Solana Application Security Assessment March 12, 2025

Contents About Zellic 3

1. Overview 3

1.1. Executive Summary 4

1.2. Goals of the Assessment 4

1.3. Non-goals and Limitations 4

1.4. Results 4

2. Introduction 5

2.1. About BPF Stake Program 6

2.2. Methodology 6

2.3. Scope 8

2.4. Project Overview 8

2.5. Project Timeline 9

3. Discussion 9

3.1. Test suite 10

4. ThreatModel 11

4.1. solana-stake program 13

5. Assessment Results 41

5.1. Disclaimer 42

Zellic © 2025 ← Back to Contents Page 2 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2025 ← Back to Contents Page 3 of 42

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io


BPF Stake Program Solana Application Security Assessment March 12, 2025

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for Anza fromFebruary 21th toMarch 7th, 2025. During this
engagement, Zellic reviewed BPF Stake Program's code for security vulnerabilities, design issues,
and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Are all state changes properly done?
• Are signer checks in place where they belong?
• Are ownership checks in place where they belong?
• What edge-case differences exist between this implementation and the previous
implementation?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

During our assessment on the scoped BPF Stake Program programs, there were no security
vulnerabilities discovered.

Zellic recorded its notes and observations from the assessment for the benefit of Anza in the
Discussion section (3. ↗).

Zellic © 2025 ← Back to Contents Page 4 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 0

■ Medium 0

■ Low 0

■ Informational 0

Zellic © 2025 ← Back to Contents Page 5 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

2. Introduction 2.1. About BPF Stake Program

Anza contributed the following description of BPF Stake Program:

The BPF Stake Program is a port of the existing Native Stake Program to run as a true onchain
program instead of a component of the validator client.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the programs.

Business logic errors. Business logic is the heart of any smart contract application.
We examine the specifications and designs for inconsistencies, flaws, and weaknesses
that create opportunities for abuse. For example, these include problems like unrealistic
tokenomicsordangerousarbitrageopportunities. To thebestofourabilities, timepermitting,
we also review the contract logic to ensure that the code implements the expected
functionality as specified in the platform's design documents.

Integration risks. Several well-known exploits have not been the result of any bug within
the contract itself; rather, they are an unintended consequence of the contract's interaction
with the broader DeFi ecosystem. Time permitting, we review external interactions and
summarize the associated risks: for example, flash loan attacks, oracle price manipulation,
MEV/sandwich attacks, and so on.

Code maturity. We look for potential improvements in the codebase in general. We look
for violations of industry best practices and guidelines and code quality standards. We
also provide suggestions for possible optimizations, such as gas optimization, upgradability
weaknesses, centralization risks, and so on.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.

Zellic © 2025 ← Back to Contents Page 6 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Finally, Zellic provides a list of miscellaneous observations that do not have security impact or are
not directly related to the scoped programs itself. These observations — found in the Discussion
(3. ↗) section of the document — may include suggestions for improving the codebase, or general
recommendations, but do not necessarily convey that we suggest a code change.

Zellic © 2025 ← Back to Contents Page 7 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

2.3. Scope

The engagement involved a review of the following targets:

BPF Stake ProgramPrograms

Type Rust

Platform Solana

Target stake

Repository https://github.com/solana-program/stake ↗

Version 5ec49ccb08c3e588940a2038c99efc7acf563b4a

Programs entrypoint.rs
processor.rs

2.4. Project Overview

Zellicwas contracted to performa security assessment for a total of 2.2 person-weeks. The assess-
ment was conducted by two consultants over the course of 11 calendar days.

Zellic © 2025 ← Back to Contents Page 8 of 42

https://github.com/solana-program/stake


BPF Stake Program Solana Application Security Assessment March 12, 2025

Contact Information

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Aaron Esau
Engineer
aaron@zellic.io ↗

Ethan Lee
Engineer
ethl@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

February 20, 2025 Kick-off call

February 21, 2025 Start of primary review period

March 7, 2025 End of primary review period

Zellic © 2025 ← Back to Contents Page 9 of 42

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:aaron@zellic.io
mailto:ethl@zellic.io


BPF Stake Program Solana Application Security Assessment March 12, 2025

3. Discussion The purpose of this section is to documentmiscellaneous observations that wemade during the
assessment. These discussion notes are not necessarily security related and do not convey that
we are suggesting a code change.

3.1. Test suite

When building a complex contract ecosystemwithmultiple moving parts and dependencies,
comprehensive testing is essential. This includes testing for both positive and negative scenarios.
Positive tests should verify that each function's side effect is as expected, while negative tests
should cover every revert, preferably in every logical branch.

Good test coverage hasmultiple effects.

• It finds bugs and design flaws early (preaudit or prerelease).
• It gives insight into areas for optimization (e.g., gas cost).
• It displays codematurity.
• It improves understanding of how the code functions, integrates, and operates — for
developers and auditors alike.

We recommend creating unit tests for the following instructions:

• StakeInstruction::SetLockup

• StakeInstruction::AuthorizeWithSeed

• StakeInstruction::DeactivateDelinquent

Additionally, we believe the following tests should bemore comprehensive; that is, the following
tests do not cover all positive or negative behaviors:

• StakeInstruction::SetLockupChecked

Positive test — Expected behavior when the stake account's state is
StakeStateV2::Initialized. Note that the current test does not assert that
the proper state changes have beenmade to the account lockup.
Positive test — Expected behavior when the stake account's state is
StakeStateV2::Stake.
Negative test —Missing required signatures.
Negative test — The stake account's state is not
StakeStateV2::Initialized or StakeStateV2::Stake.
Negative test — The lockup is in force.

• StakeInstruction::AuthorizeCheckedWithSeed

Positive test — Expected behavior when the stake account's state is
StakeStateV2::Initialized. Note that the current test does not assert that
the proper state changes have beenmade to the authorized staker or
withdrawer.

Zellic © 2025 ← Back to Contents Page 10 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

Positive test — Expected behavior when the stake account's state is
StakeStateV2::Stake.
Negative test —Missing required signatures.
Negative test — The stake account's state is not
StakeStateV2::Initialized or StakeStateV2::Stake.
Negative test — The lockup is in force.

Practically speaking, most of the code in the underlying state.rs module (used by the
StakeInstruction::SetLockupChecked and StakeInstruction::AuthorizeCheckedWithSeed
functions in particular) has been tested in the staking program tests. However, we recommend
testing through the new BPF interface too for the aforementioned reasons.

Zellic © 2025 ← Back to Contents Page 11 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

4. ThreatModel As time permitted, we analyzed each instruction in the program and created a written threat model
for themost critical instructions. A threat model documents the high-level functionality of a given
instruction, the inputs it receives, and the accounts it operates on as well as themain checks
performed on them; it gives an overview of the attack surface of the programs and of the level of
control an attacker has over the inputs of critical instructions.

For brevity, system accounts andwell-known program accounts have not been included in the list
of accounts received by an instruction; the instructions that receive these accountsmake use of
Anchor types, which automatically ensure that the public key of the account is correct.

Not all instructions in the audit scopemay have beenmodeled. The absence of a threat model in
this section does not necessarily suggest that an instruction is safe.

Zellic © 2025 ← Back to Contents Page 12 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

4.1. solana-stake program

Instruction: Authorize

This instruction updates the stake or withdraw authority of a stake account whomanages stake or
withdrawal.

Input structure

pub enum StakeAuthorize {
Staker,
Withdrawer,

}

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Stake account to be updated
/// 1. `[]` Clock sysvar
/// 2. `[SIGNER]` The stake or withdraw authority
/// 3. Optional: `[SIGNER]` Lockup authority, if updating
StakeAuthorize::Withdrawer before
/// lockup expiration
Authorize(Pubkey, StakeAuthorize),

}

fn process_authorize(
accounts: &[AccountInfo],
new_authority: Pubkey,
authority_type: StakeAuthorize,

) -> ProgramResult {

Parameters

• new_authority: The new authority to update.
• authority_type: The type of authority to update.

Accounts

• stake_account: The stake account to be updated.

• Signer: No.
• Init: No.

Zellic © 2025 ← Back to Contents Page 13 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• clock: The account must be a clock sysvar.

• stake_or_withdraw_authority: Unused.

• option_lockup_authority (optional): The lockup authority account, if updating
StakeAuthorize::Withdrawer before lockup expiration.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• lockup_authoritymust be a signer if provided.
• When updating the staker, either the current staker or the withdrawer of the stake
account must be a signer.

• When updating the withdrawer, the current withdrawer of the stake account must be a
signer.

• When updating thewithdrawer, the lockupmust not be in force or the custodianmust be
a signer.

• The stake account authority is updatedwith the provided new_authorized key.

Instruction: AuthorizeChecked

This instruction updates the stake or withdraw authority of a stake account whomanages stake or
withdrawal. This instruction behaves like Authorizewith the additional requirement that the new
authority must be a signer.

Input structure

pub enum StakeAuthorize {
Staker,
Withdrawer,

Zellic © 2025 ← Back to Contents Page 14 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

}

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Stake account to be updated
/// 1. `[]` Clock sysvar
/// 2. `[SIGNER]` The stake or withdraw authority
/// 3. `[SIGNER]` The new stake or withdraw authority
/// 4. Optional: `[SIGNER]` Lockup authority, if updating
StakeAuthorize::Withdrawer before
/// lockup expiration
AuthorizeChecked(StakeAuthorize),

}

fn process_authorize_checked(
accounts: &[AccountInfo],
authority_type: StakeAuthorize,

) -> ProgramResult {

Parameters

• authority_type: The type of authority to update.

Accounts

• stake_account: The stake account to be updated.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• clock: The account must be a clock sysvar.

• old_stake_or_withdraw_authority: Unused.

• new_stake_or_withdraw_authority: The new stake or withdraw authority account.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.

Zellic © 2025 ← Back to Contents Page 15 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

• option_lockup_authority (optional): The lockup authority account, if updating
StakeAuthorize::Withdrawer before lockup expiration.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• lockup_authoritymust be a signer if provided.
• new_stake_or_withdraw_authoritymust be a signer.
• When updating the staker, either the current staker or the withdrawer of the stake
account must be a signer.

• When updating the withdrawer, the current withdrawer of the stake account must be a
signer.

• When updating thewithdrawer, the lockupmust not be in force or the custodianmust be
a signer.

• The stake account authority is updatedwith the provided new_authorized key.

Instruction: AuthorizeCheckedWithSeed

This instruction updates the stake or withdraw authority of a stake account whomanages stake or
withdrawal. The stake or withdraw authority must be a signer to use an account derived from the
seed as a signer. This instruction behaves like AuthorizeWithSeedwith the additional requirement
that the new authority must be a signer.

Input structure

pub enum StakeAuthorize {
Staker,
Withdrawer,

}

pub struct AuthorizeCheckedWithSeedArgs {

Zellic © 2025 ← Back to Contents Page 16 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

pub stake_authorize: StakeAuthorize,
pub authority_seed: String,
pub authority_owner: Pubkey,

}

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Stake account to be updated
/// 1. `[SIGNER]` Base key of stake or withdraw authority
/// 2. `[]` Clock sysvar
/// 3. `[SIGNER]` The new stake or withdraw authority
/// 4. Optional: `[SIGNER]` Lockup authority, if updating
StakeAuthorize::Withdrawer before
/// lockup expiration
AuthorizeCheckedWithSeed(AuthorizeCheckedWithSeedArgs),

}

Parameters

• stake_authorize: The type of authority to update.
• authority_seed: The seed for the derived address.
• authority_owner: The owner of the derived address.

Accounts

• stake_account: The stake account to be updated.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• old_stake_or_withdraw_authority_base: The base key of the stake or withdraw
authority.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.

Zellic © 2025 ← Back to Contents Page 17 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Address checks: None.
• clock: The account must be a clock sysvar.

• new_stake_or_withdraw_authority: The new stake or withdraw authority account.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

• option_lockup_authority (optional): The lockup authority account, if updating
StakeAuthorize::Withdrawer before lockup expiration.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• lockup_authoritymust be a signer if provided.
• new_stake_or_withdraw_authoritymust be a signer.
• stake_or_withdraw_authority_basemust be a signer so that the account derived
from the seed becomes a signer.

• When updating the staker, either the current staker or the withdrawer of the stake
account must be a signer.

• When updating the withdrawer, the current withdrawer of the stake account must be a
signer.

• When updating thewithdrawer, the lockupmust not be in force or the custodianmust be
a signer.

• The stake account authority is updatedwith the provided new_authorized key.

Instruction: AuthorizeWithSeed

This instruction updates the stake or withdraw authority of a stake account whomanages stake or
withdrawal. The stake or withdraw authority must be a signer to use an account derived from the
seed as a signer.

Zellic © 2025 ← Back to Contents Page 18 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

Input structure

pub struct AuthorizeWithSeedArgs {
pub new_authorized_pubkey: Pubkey,
pub stake_authorize: StakeAuthorize,
pub authority_seed: String,
pub authority_owner: Pubkey,

}

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Stake account to be updated
/// 1. `[SIGNER]` Base key of stake or withdraw authority
/// 2. `[]` Clock sysvar
/// 3. Optional: `[SIGNER]` Lockup authority, if updating
StakeAuthorize::Withdrawer before
/// lockup expiration
AuthorizeWithSeed(AuthorizeWithSeedArgs),

}

fn process_authorize_with_seed(
accounts: &[AccountInfo],
authorize_args: AuthorizeWithSeedArgs,

) -> ProgramResult {

Parameters

• new_authorized_pubkey: The new authority to update.
• stake_authorize: The type of authority to update.
• authority_seed: The seed for the derived address.
• authority_owner: The owner of the derived address.

Accounts

• stake_account: The stake account to be updated.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.

Zellic © 2025 ← Back to Contents Page 19 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Address checks: None.
• clock: The account must be a clock sysvar.

• stake_or_withdraw_authority_base: The base key of the stake or withdraw authority.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

• option_lockup_authority (optional): The lockup authority account, if updating
StakeAuthorize::Withdrawer before lockup expiration.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• lockup_authoritymust be a signer if provided.
• stake_or_withdraw_authority_basemust be a signer so that the account derived
from the seed becomes a signer.

• When updating the staker, either the current staker or the withdrawer of the stake
account must be a signer.

• When updating the withdrawer, the current withdrawer of the stake account must be a
signer.

• When updating thewithdrawer, the lockupmust not be in force or the custodianmust be
a signer.

• The stake account authority is updatedwith the provided new_authorized key.

Instruction: Deactivate

This instruction deactivates delegation of a stake account by setting the deactivation epoch.

Zellic © 2025 ← Back to Contents Page 20 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

Input structure

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Delegated stake account
/// 1. `[]` Clock sysvar
/// 2. `[SIGNER]` Stake authority
Deactivate,

}

Accounts

• stake_account: The delegated stake account.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• clock: The account must be a clock sysvar.

• stake_authority: The stake authority account who is authorized tomanage the stake
account.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• The staker of the stake account must be a signer.
• The stake account must be in the Stake state.
• The stake account must not be deactivated.
• The deactivation epoch of the stake account is set to the current epoch.

Zellic © 2025 ← Back to Contents Page 21 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

Instruction: DeactivateDelinquent

This instruction deactivates delegation of a stake account that has been delegated to a vote
account that has been delinquent for at least MINIMUM_DELINQUENT_EPOCHS_FOR_DEACTIVATION
epochs.

Input structure

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Delegated stake account
/// 1. `[]` Delinquent vote account for the delegated stake account
/// 2. `[]` Reference vote account that has voted at least once in the
last
/// `MINIMUM_DELINQUENT_EPOCHS_FOR_DEACTIVATION` epochs
DeactivateDelinquent,

}

Accounts

• stake_account: The delegated stake account to be deactivated.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• delinquent_vote_account: The delinquent vote account for the delegated stake
account.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: The account must be owned by the Solana vote program.
• Address checks: None.

• reference_vote_account: The reference vote account that is active over previous
MINIMUM_DELINQUENT_EPOCHS_FOR_DEACTIVATION epochs.

Zellic © 2025 ← Back to Contents Page 22 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Signer: No.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: The account must be owned by the Solana vote program.
• Address checks: None.

Additional checks and behavior

• The reference_vote_accountmust have been activated over the previous
MINIMUM_DELINQUENT_EPOCHS_FOR_DEACTIVATION epochs.

• The stake account must be in the Stake state.
• The stake account must be delegated to the delinquent_vote_account.
• The delinquent_vote_accountmust have been delinquent over the previous
MINIMUM_DELINQUENT_EPOCHS_FOR_DEACTIVATION epochs.

• Delegation of the stake account is deactivated if the above conditions aremet.

Instruction: DelegateStake

This instruction delegates a stake account to a vote account. If the stake account is already
delegated, the stake account is redelegated to the provided vote account.

Input structure

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Initialized stake account to be delegated
/// 1. `[]` Vote account to which this stake will be delegated
/// 2. `[]` Clock sysvar
/// 3. `[]` Stake history sysvar that carries stake warmup/cooldown
history
/// 4. `[]` Unused account, formerly the stake config
/// 5. `[SIGNER]` Stake authority
DelegateStake,

}

Accounts

• stake_account: The initialized stake account to be delegated.

Zellic © 2025 ← Back to Contents Page 23 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: The account must be rent-exempt.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• vote_account: The vote account to which this stake will be delegated.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the Solana vote program.
• Address checks: None.

• clock: The account must be a clock sysvar.
• stake_history_info: Unused.
• stake_config: Unused.

• stake_authority: The stake authority account who is authorized tomanage the stake
account.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• The stake account must be initialized or delegated.
• The current staker or the withdrawer of the stake account must be a signer.
• The stake account must have enough lamports to be rent-exempt.
• The stake amountmust be greater than theminimum delegation amount.
• The stake account state is set to Stakewith the provided stake amount and vote
account if the stake account is initialized.

• If the stake account is already delegated, the stake account is redelegated to the
provided vote account.

• If the stake is active, deactivation is rescinded if the new voter pubkey is the

Zellic © 2025 ← Back to Contents Page 24 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

same as the current voter pubkey and the stake is scheduled to start
deactivating this epoch. Otherwise, an error is returned, indicating that it is
too soon to redelegate.

• The activation epoch of the stake delegation is set to the current epoch.
• The deactivation epoch of the stake delegation is set to u64::MAX to indicate
that the stake is not deactivating.

• The voter of the stake delegation is set to the provided vote account pubkey.
• The credits observed are set to the credits of the provided vote account.

Instruction: GetMinimumDelegation

This instruction returns theminimum stake amount that can be delegated, in lamports.

Input structure

pub enum StakeInstruction {
/// # Account references
/// None
GetMinimumDelegation

}

Accounts

• None.

Additional checks and behavior

• None.

Instruction: Initialize

This instruction initializes an uninitialized stake account with authorization and lockup information.

Input structure

pub struct Authorized {
pub staker: Pubkey,
pub withdrawer: Pubkey,

Zellic © 2025 ← Back to Contents Page 25 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

}

pub struct Lockup {
/// UnixTimestamp at which this stake will allow withdrawal, unless the
/// transaction is signed by the custodian
pub unix_timestamp: UnixTimestamp,
/// epoch height at which this stake will allow withdrawal, unless the
/// transaction is signed by the custodian
pub epoch: Epoch,
/// custodian signature on a transaction exempts the operation from
/// lockup constraints
pub custodian: Pubkey,

}

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Uninitialized stake account
/// 1. `[]` Rent sysvar
Initialize(Authorized, Lockup)

}

fn process_initialize(
accounts: &[AccountInfo],
authorized: Authorized,
lockup: Lockup,

) -> ProgramResult {

Parameters

• authorized: The staker andwithdrawer to be authorized.
• lockup: The lockup information.

Lockup

• unix_timestamp: Unix timestampwhen the lockup expires.
• epoch: Epochwhen the lockup expires.
• custodian: Custodian key on a transaction exempts the operation from lockup
constraints.

• authorized: The staker andwithdrawer to be authorized.
• lockup: The lockup information.

Accounts

• stake_account: The uninitialized stake account.

Zellic © 2025 ← Back to Contents Page 26 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: The account must be rent-exempt.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• rent: The account must be a rent sysvar.

Additional checks and behavior

• The size of the stake account must be equal to the size of StakeStateV2.
• The stake account must be uninitialized.
• The stake account must have enough lamports to be rent-exempt.
• The stake account is initialized with the provided authorized and lockup information.

Instruction: InitializeChecked

This instruction initializes an uninitialized stake account with authorization andwithout lockup
information. This instruction behaves like Initializewith the additional requirement that the
withdraw authority must be a signer.

Input structure

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Uninitialized stake account
/// 1. `[]` Rent sysvar
/// 2. `[]` The stake authority
/// 3. `[SIGNER]` The withdraw authority
InitializeChecked,

}

Accounts

• stake_account: The uninitialized stake account.

• Signer: No.
• Init: No.
• PDA: No.

Zellic © 2025 ← Back to Contents Page 27 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Writable: Yes.
• Rent checks: The account must be rent-exempt.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• rent: The account must be a rent sysvar.

• stake_authority: The stake authority account to be authorized tomanage the stake
account.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

• withdraw_authority: The withdraw authority account to be authorized to withdraw
from the stake account.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• The size of stake_accountmust be equal to the size of StakeStateV2.
• withdraw_authoritymust be a signer.
• The stake account must be uninitialized.
• The stake account must have enough lamports to be rent-exempt.
• The stake account is initialized with the provided authorized and lockup information.

Instruction: Merge

This instruction splits tokens and stake off a stake account into a new stake account.

Zellic © 2025 ← Back to Contents Page 28 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

Input structure

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Destination stake account for the merge
/// 1. `[WRITE]` Source stake account for to merge. This account will be
drained
/// 2. `[]` Clock sysvar
/// 3. `[]` Stake history sysvar that carries stake warmup/cooldown
history
/// 4. `[SIGNER]` Stake authority
Merge,

}

Accounts

• destination_stake_account: The destination stake account for themerge.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: The addressmust be different from the source stake
account.

• source_stake_account: The source stake account tomerge that will be drained.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: The addressmust be different from the destination stake
account.

• clock: The account must be a clock sysvar.

• stake_history_info: Unused.

• stake_authority: The stake authority account who is authorized tomanage the stake
account.

Zellic © 2025 ← Back to Contents Page 29 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• The stake accountsmust be in the Stake or Initialized state.
• The stake accountsmust not be in a transient state, such as activating or deactivating
with nonzero effective stake.

• The staker of the destination stake account must be the signer.
• The lockups of the source and destination stake accountsmust match if they are in
force.

• The authorities of the source and destination stake accountsmust match.
• The stake accountsmust have the same voter pubkey.
• Both stake accountsmust not be scheduled for deactivation.
• If either merge kind of stake accounts is inactive, the destination stake account must be
activating.

• If the destination stake account is activating and the source stake account is inactive,
merge the source stake account into the destination stake account.

• If both stake accounts are activating, merge the source stake account into the
destination stake account with rent-exempt reserve and update the credits observed.

• If both stake accounts are active, merge the source stake account into the destination
stake account and update the credits observed.

• The source stake account state is deinitialized.
• All lamports aremoved from the source stake account to the destination stake account.

Instruction: MoveLamports

This instructionmoves unstaked lamports between accounts with the same authorities and
lockups, using the staker authority.

Input structure

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Active or inactive source stake account

Zellic © 2025 ← Back to Contents Page 30 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

/// 1. `[WRITE]` Mergeable destination stake account
/// 2. `[SIGNER]` Stake authority
///
/// The u64 is the portion of available lamports to move
MoveLamports(u64),

}

fn process_move_lamports(accounts: &[AccountInfo], lamports: u64) ->
ProgramResult {

Parameters

• lamports: The amount of unstaked lamports tomove.

Accounts

• source_stake_account: The source stake account tomove unstaked lamports from.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: The addressmust be different from the destination stake
account.

• destination_stake_account: The destination stake account tomove unstaked
lamports to.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: The addressmust be different from the source stake
account.

• stake_authority: The stake authority account who is authorized tomanage the stake
account.

• Signer: Yes.
• Init: No.
• PDA: No.

Zellic © 2025 ← Back to Contents Page 31 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• Thewithdrawal amountmust not be equal to zero.
• The stake accountsmust be in the Stake or Initialized state.
• The stake accountsmust not be in a transient state, such as activating or deactivating
with nonzero effective stake.

• The staker of the source stake account must be the signer.
• The lockups of the source and destination stake accountsmust match if they are in
force.

• The authorities of the source and destination stake accountsmust match.
• The free lamports of the source stake account must be greater than or equal to the
amount tomove.

• The lamports aremoved from the source stake account to the destination stake account.

Instruction: MoveStake

This instructionmoves stake between accounts with the same authorities and lockups, using the
staker authority.

Input structure

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Active source stake account
/// 1. `[WRITE]` Active or inactive destination stake account
/// 2. `[SIGNER]` Stake authority
///
/// The u64 is the portion of the stake to move, which may be the entire
delegation
MoveStake(u64),

}

fn process_move_stake(accounts: &[AccountInfo], lamports: u64) ->
ProgramResult {

Zellic © 2025 ← Back to Contents Page 32 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

Parameters

• lamports: The amount of stake tomove.

Accounts

• source_stake_account: The source stake account tomove stake from.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: The addressmust be different from the destination stake
account.

• destination_stake_account: The destination stake account tomove stake to.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: The addressmust be different from the source stake
account.

• stake_authority: The stake authority account who is authorized tomanage the stake
account.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• Thewithdrawal amountmust not be equal to zero.
• The stake accountsmust be in the Stake or Initialized state.
• The stake accountsmust not be in a transient state, such as activating or deactivating
with nonzero effective stake.

Zellic © 2025 ← Back to Contents Page 33 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• The staker of the source stake account must be the signer.
• The lockups of the source and destination stake accountsmust match if they are in
force.

• The authorities of the source and destination stake accountsmust match.
• The size of source_stake_account and destination_stake_accountmust be equal to
the size of StakeStateV2.

• The destinationmerge kindmust be fully active or inactive.
• The source stake account must have enough stake tomove.
• The source stake account must retain at least theminimum delegation if not all stake is
beingmoved.

• If the destination stake account is active, the destination stake account must retain at
least theminimum delegation.

• If the destination stake account is inactive, lamports tomovemust not be less than the
minimum delegation.

• Stake and lamports aremoved from the source stake account to the destination stake
account.

• An error is returned if the source or destination account balance is less than the
rent-exempt reserve.

Instruction: Redelegate

This instruction is deprecated. The programwill return an error if this instruction is called.

Instruction: SetLockup

This instruction updates the lockup information of a stake account. If the lockup is active, the
lockup custodianmay update the lockup parameters. If the lockup is not active, the withdraw
authority may set a new lockup.

Input structure

pub struct LockupArgs {
pub unix_timestamp: Option<UnixTimestamp>,
pub epoch: Option<Epoch>,
pub custodian: Option<Pubkey>,

}

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Initialized stake account
/// 1. `[SIGNER]` Lockup authority or withdraw authority
SetLockup(LockupArgs),

Zellic © 2025 ← Back to Contents Page 34 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

}

Parameters

• unix_timestamp: Unix timestampwhen the lockup expires.
• epoch: Epochwhen the lockup expires.
• custodian: Custodian key on a transaction exempts the operation from lockup
constraints.

Accounts

• stake_account: The initialized stake account whose lockup information will be updated.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• lockup_or_withdraw_authority: The lockup authority or withdraw authority account
must be a signer.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• Only the lockup custodian can update the lockupwhile it is in force.
• Only the withdraw authority can set a new lockup if the lockup is not in force.

Instruction: SetLockupChecked

This instruction updates the lockup information of a stake account. if the lockup is active, the
lockup custodianmay update the lockup parameters. If the lockup is not active, the withdraw

Zellic © 2025 ← Back to Contents Page 35 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

authority may set a new lockup. This instruction behaves like SetLockupwith the additional
requirement that the new lockup authority also be a signer.

Input structure

pub struct LockupCheckedArgs {
pub unix_timestamp: Option<UnixTimestamp>,
pub epoch: Option<Epoch>,

}

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Initialized stake account
/// 1. `[SIGNER]` Lockup authority or withdraw authority
/// 2. Optional: `[SIGNER]` New lockup authority
SetLockupChecked(LockupCheckedArgs),

}

Parameters

• unix_timestamp: Unix timestampwhen the lockup expires.
• epoch: Epochwhen the lockup expires.

Accounts

• stake_account: The initialized stake account whose lockup information will be updated.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• old_withdraw_or_lockup_authority: Unused.

• option_new_lockup_authority (optional): The new lockup authority account to be a
custodian.

• Signer: Yes.
• Init: No.
• PDA: No.

Zellic © 2025 ← Back to Contents Page 36 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• Only the lockup custodian can update the lockupwhile it is in force.
• Only the withdraw authority can set a new lockup if the lockup is not in force.
• The new lockup authority must be a signer.

Instruction: Split

This instruction splits tokens and stake off a stake account into a new stake account.

Input structure

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Stake account to be split; must be in the Initialized or
Stake state
/// 1. `[WRITE]` Uninitialized stake account that will take the
split-off amount
/// 2. `[SIGNER]` Stake authority
Split(u64),

}

fn process_split(accounts: &[AccountInfo], split_lamports: u64) ->
ProgramResult {

Parameters

• split_lamports: The amount of lamports to split off from the source stake account.

Accounts

• source_stake_account: The initialized or delegated stake account to be split.

• Signer: No.
• Init: No.

Zellic © 2025 ← Back to Contents Page 37 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• PDA: No.
• Writable: Yes.
• Rent checks: The account must be rent-exempt.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• destination_stake_account: The uninitialized stake account that will take the split-off
amount.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the Solana vote program.
• Address checks: None.

• stake_authority: The stake authority account who is authorized tomanage the stake
account.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• The size of the destination stake account must be equal to the size of StakeStateV2.
• The destination stake account must be uninitialized.
• The lamports to be split must be less than or equal to the lamports in the source stake
account.

• The staker of the source stake account must be a signer.
• The lamports to be split must be greater than zero and less than or equal to the total
lamports in the source stake account.

• The remaining balance of the source stake account after the split must be at least the
rent exempt reserve plus the additional required lamports, which can be zero or the
minimum delegation amount.

• If the source stake account is active, whichmeans it has a effective stake, then one of
the following criteria must bemet: 1) the destination stake account must be prefunded
with at least the rent-exempt reserve, or 2) the split must consume 100% of the source
stake account.

Zellic © 2025 ← Back to Contents Page 38 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• The split amountmust be less than the rent reserve plus the additional required
lamportsminus the current destination balance.

• If the source stake account is in the Stake state, the following takes place:

• If the remaining balance of the source stake account is zero, the remaining
stake delta and split stake amountmust be equal. Otherwise, the stake
amount of the source stake account minus the split amountmust be greater
than or equal to theminimum delegation amount.

• The split stake amountmust be greater than or equal to theminimum
delegation amount.

• The source stake account is split into the destination stake account.
• If the source stake account is uninitialized, the source stake account must be a signer.
• Copy the source stake account meta to the destination stake account meta with new
rent-exempt reserve.

• The source stake account is deinitialized if the split amount is equal to the total lamports
in the source stake account.

• The split amount of lamports is moved from the source stake account to the destination
stake account.

Instruction: Withdraw

This instruction withdraws unstaked lamports from a stake account.

Input structure

pub enum StakeInstruction {
/// # Account references
/// 0. `[WRITE]` Stake account from which to withdraw
/// 1. `[WRITE]` Recipient account
/// 2. `[]` Clock sysvar
/// 3. `[]` Stake history sysvar that carries stake warmup/cooldown
history
/// 4. `[SIGNER]` Withdraw authority
/// 5. Optional: `[SIGNER]` Lockup authority, if before lockup expiration
///
/// The u64 is the portion of the stake account balance to be withdrawn,
/// must be `<= StakeAccount.lamports - staked_lamports`.
Withdraw(u64),

}

fn process_withdraw(accounts: &[AccountInfo], withdraw_lamports: u64) ->
ProgramResult {

Zellic © 2025 ← Back to Contents Page 39 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

Parameters

• withdraw_lamports: The amount of unstaked lamports to withdraw.

Accounts

• source_stake_account: The stake account fromwhich to withdraw.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: The account must be owned by the program.
• Address checks: None.

• destination: The recipient account.

• Signer: No.
• Init: No.
• PDA: No.
• Writable: Yes.
• Rent checks: None.
• Ownership checks: None— but only lamports' balance is updated.
• Address checks: None.

• clock: The account must be a clock sysvar.

• stake_history: Unused.

• withdraw_authority: The withdraw authority account who is authorized to withdraw
from the stake account.

• Signer: Yes.
• Init: No.
• PDA: No.
• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

• option_lockup_authority (optional): The lockup authority account if before lockup
expiration.

• Signer: Yes.
• Init: No.
• PDA: No.

Zellic © 2025 ← Back to Contents Page 40 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

• Writable: No.
• Rent checks: None.
• Ownership checks: None.
• Address checks: None.

Additional checks and behavior

• withdraw_authoritymust be a signer.
• option_lockup_authoritymust be a signer if provided.
• Signersmust contain the withdraw authority and optionally the lockup authority if
provided.

• The stake account must have sufficient lamports to cover the withdrawal amount plus
any required reserve.

• If the stake account is in the Stake state, and if the current epoch is greater than or equal
to the deactivation epoch, the stake amount is calculated using the stake history and
cooldown. Otherwise, the stake amount is the delegation stake.

• If the stake account is in the Uninitialized state, the source_stake_accountmust be a
signer.

• The lockupmust have expired or the custodianmust be a signer if the lockup is in force.
• If the withdrawal amount is equal to the stake account balance and the account is still
active, the withdrawal is rejected.

• If the withdrawal amount is equal to the stake account balance, the account is
deinitialized.

• If the withdrawal amount is less than the stake account balance, the withdrawal amount
must not deplete the reserve.

Zellic © 2025 ← Back to Contents Page 41 of 42



BPF Stake Program Solana Application Security Assessment March 12, 2025

5. Assessment Results At the time of our assessment, the reviewed codewas not deployed on SolanaMainnet.

During our assessment on the scoped BPF Stake Program programs, there were no security
vulnerabilities discovered.

5.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2025 ← Back to Contents Page 42 of 42


	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About BPF Stake Program
	Methodology
	Scope
	Project Overview
	Project Timeline

	Discussion
	Test suite

	Threat Model
	solana-stake program

	Assessment Results
	Disclaimer


