TRAL

875

Solang Code Generation

Security Assessment (Summary Report)

July 12, 2023

Prepared for:
Sean Young
Solana Labs

Prepared by: Samuel Moelius and Vara Prasad Bandaru

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we've helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O'Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.

228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Solang Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be business confidential information; it is
licensed to Solana Labs under the terms of the project statement of work and intended
solely for internal use by Solana Labs. Material within this report may not be reproduced or
distributed in part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer

All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Solang Security Assessment
CONFIDENTIAL

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Executive Summary 4
Project Summary 5
Project Goals 6
Project Targets 7
Summary of Findings 8
Detailed Findings 10
1. Dependency with open RUSTSEC advisory 10
2. Outdated dependencies 12
3. Insufficient test coverage 14
4. Tests do not pass with latest stable Rust 16
5. Strength reduction does not properly handle undefined variables 17
6. Solang fails to compile struct containing dynamic-sized arrays of its own type 20
7. Monolithic test 22
8. Optimizations hide errors contracts 24
9. Solang compiled contracts can have multiple storage accounts 25
10. An attacker can reinitialize a Solang contract 27
11. Compiler does not verify the developer specified size for the data account 29
12. The bump is not guaranteed to be at the end of seeds array 31
13. Appending state variables to Solang contracts affects their storage layout 33
A. Vulnerability Categories 35
B. Non-Security-Related Findings 37
Trail of Bits 3 Solang Security Assessment

CONFIDENTIAL

Executive Summary

Engagement Overview

Solana Labs engaged Trail of Bits to review the security of Solang’'s codegen module,
specifically in how it generates Solana code.

A team of two consultants conducted the review from June 23 to July 12, 2023, for a total of
four engineer-weeks of effort. With full access to source code and documentation, we
performed static and dynamic testing of the codebase, using automated and manual
processes.

Observations and Impact

As discussed under TOB-SOLCG-3, there are no tests to verify that unoptimized and
optimized code behave the same. During the project kickoff call, the Solang team described
an improperly applied optimization as a “worst case scenario.” Having tests to help verify
the optimization passes’ correctness is the best way to defend against such possibilities.
Hence, we highly recommend that such tests be added.

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS CATEGORY BREAKDOWN
Severity Count Category Count
High 3 Data Validation 5
Medium 1 Patching 2
Low 3 Testing 3
Informational 6 Undefined Behavior 3
Undetermined 0

Trail of Bits 4 Solang Security Assessment

CONFIDENTIAL

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Jeff Braswell, Project Manager
dan@trailofbits.com jeff.braswell@trailofbits.com

The following engineers were associated with this project:

Samuel Moelius, Consultant Vara Prasad Bandaru, Consultant
samuel.moelius@trailofbits.com vara.bandaru@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

June 15, 2023 Technical Onboarding call

June 23, 2023 Pre-project kickoff call

June 30, 2023 Status update meeting #1

July 12, 2023 Delivery of report draft

July 12, 2023 Report readout meeting

Trail of Bits 5 Solang Security Assessment

CONFIDENTIAL

mailto:dan@trailofbits.com

Project Goals

The engagement was scoped to provide a security assessment of the Solang's codegen
module, specifically in how it generates Solana code. We sought to answer the following
non-exhaustive list of questions:

e Does code emitted by the codegen module preserve the semantics of the original
source code?

e Are optimizations applied under appropriate circumstances?
e Do optimizations preserve the semantics of the unoptimized code?

e Does Solang's codegen strategy introduce behavior that would be surprising to
Solidity or Solana developers?

Trail of Bits 6 Solang Security Assessment
CONFIDENTIAL

Project Targets

The engagement involved a review and testing of the following target.

Solang codegen module

Repository https://github.com/hyperledger/solang/tree/main/src/codegen
Version a84bBad3b67a17b524ef6b74371d4c5376833807
Type Rust/Solidity
Platform Solana
Trail of Bits 7 Solang Security Assessment

CONFIDENTIAL

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title

1 Dependency with open RUSTSEC advisory

2 Outdated dependencies

3 Insufficient test coverage

4 Tests do not pass with latest stable Rust

5 Strength reduction does not properly handle
undefined variables

6 Solang fails to compile struct containing
dynamic-sized arrays of its own type

7 Monolithic test

8 Optimizations hide errors contracts

9 Solang compiled contracts can have multiple
storage accounts

10 An attacker can reinitialize a Solang contract

11 Compiler does not verify the developer specified
size for the data account

12 The bump is not guaranteed to be at the end of
seeds array

Trail of Bits 8

CONFIDENTIAL

Type

Patching

Patching

Testing

Testing

Data Validation

Data Validation

Testing

Undefined
Behavior

Data Validation

Data Validation

Data Validation

Undefined
Behavior

Solang Security Assessment

Severity

Informational

Informational

Informational

Informational

Low

Low

Informational

Informational

High

High

Medium

Low

13 Appending state variables to Solang contracts Undefined High
affects their storage layout Behavior

Trail of Bits 9 Solang Security Assessment
CONFIDENTIAL

Detailed Findings

1. Dependency with open RUSTSEC advisory
Severity: Informational Difficulty: Undetermined
Type: Patching Finding ID: TOB-SOLCG-1

Target: Cargo.lock

Description

The borsh dependency (which the codegen module relies upon) has an outstanding
RUSTSEC advisory. A fix has been merged, but apparently not released. Solang should use
an updated version of borsh as soon as one is released with the fix.

The following is an excerpt from the RUSTSEC advisory:

Affected versions of borsh cause undefined behavior when zero-sized-types (ZST)
are parsed and the Copy/Clone traits are not implemented/derived. For instance
if 1000 instances of a ZST are deserialized, and the ZST is not copy (this can be
achieved through a singleton), then accessing/writing to deserialized data will
cause a segmentation fault.

There is currently no way for borsh to read data without also providing a Rust
type. Therefore, if not [sic] ZST are used for serialization, then you are not affected
by this issue.

A fix was merged on June 7, 2023. However, as of this writing, the fix does not appear in
any release.

Note: cargo-audit warns about dependencies besides borsh. However, none of those
dependencies are used by the codegen module.

Exploit Scenario
Alice, a Solang developer, writes a test that uses zero sum types. Eve learns of this fact, and
exploits the bug on Alice’'s machine.

Recommendations

Short term, watch the borsh repository, and switch to a new version of borsh as soon as
one is released with the fix. Doing so will help ensure that Solang developers and users do
not use vulnerable dependencies.

Trail of Bits 10 Solang Security Assessment
CONFIDENTIAL

https://rustsec.org/advisories/RUSTSEC-2023-0033
https://github.com/near/borsh-rs/pull/145
https://github.com/RustSec/rustsec/tree/main/cargo-audit

Long term, regularly run cargo-audit over the codebase. Doing so will help to identify
vulnerable or unmaintained dependencies.

References
e RUSTSEC-2023-0033: Parsing borsh messages with ZST which are not-copy/clone is
unsound

e BorshDeserialize can cause UB by copying zero sized objects with no safe Copy impl
e Forbid Zero-sized types from deserialization

Trail of Bits 11 Solang Security Assessment
CONFIDENTIAL

https://github.com/RustSec/rustsec/tree/main/cargo-audit
https://rustsec.org/advisories/RUSTSEC-2023-0033
https://rustsec.org/advisories/RUSTSEC-2023-0033
https://github.com/near/borsh-rs/issues/19
https://github.com/near/borsh-rs/pull/145

2. Outdated dependencies
Severity: Informational Difficulty: High
Type: Patching Finding ID: TOB-SOLCG-2

Target: Cargo.toml

Description

Updated versions of many of the codegen module’'s dependencies are available. Because
silent bug fixes are common, all dependencies should be periodically reviewed and
updated wherever possible.

Note that some of these outdated dependencies have updated versions that are
considered incompatible by Cargo; because of this, simply running cargo update will not
cause them to be updated in the project’s Cargo . lock file. Dependencies for which
incompatible upgrades are available appear in table 2.1.

Dependency Version currently in use Latest version available
itertools 0.10.5 (Sep 18, 2022) 0.11.0 Jun 22, 2023)
indexmap 1.9.3 (Mar 24, 2023) 2.0.0 (Jun 23, 2023)
anchor-syn 0.27.0 (Mar 8, 2023) 0.28 (Jun 9, 2023)

Table 2.1: Dependencies for which incompatible upgrades are available

Note: Dependencies besides those of table 2.1 can be upgraded. However, none of those
dependencies are used by the codegen module.

Exploit Scenario
Eve learns of a vulnerability in an outdated version of a codegen dependency. Knowing
that the codegen module still relies on this outdated version, Eve exploits the vulnerability.

Recommendations
Short term, update the dependencies to their latest versions wherever possible. Verify that

all unit tests pass following such updates. Document any reasons for not updating a
dependency. Using out-of-date dependencies could mean critical bug fixes are missed.

Trail of Bits 12 Solang Security Assessment
CONFIDENTIAL

Long term, regularly run cargo upgrade --incompatible. This will help ensure that the
project stays up to date with its dependencies.

Trail of Bits 13 Solang Security Assessment
CONFIDENTIAL

3. Insufficient test coverage
Severity: Informational Difficulty: High
Type: Testing Finding ID: TOB-SOLCG-3

Target: tests subdirectory

Description
Much of the codegen module is not covered by any test. Most notably, code related to
optimizations is inadequately tested.

The tests most applicable to generating Solana code are the codegen and solana tests.
Figures 3.1 and 3.2 summarize the code covered by these tests, respectively.

sze/codegen 1 535% 5827/10900 60.8% 192/316
src/codegen/dispatch L 1 857% 766 /894 95.0 % 19/20
sre/codegen/encoding [1 739% 1936/2618 613% 57/93
src/codegen/events L1 00% 0/224 00% 0/8
src/codegen/solana_accounts 1 763% 425 / 557 78.6 % 11/14
src/codegen/strength reduce s] -_ 84.7 % 61/72

src/codegen/subexpression_elimination 1 871 % 1451 / 1666 84.4 % 81 /96

Figure 3.1: Code covered by the codegen test. The four rightmost columns are: percentage of
lines covered, number of lines covered, percentage of functions covered, number of functions

covered.
src/codegen "7 726% 7908/10900 69.6% 220/316
src/codegen/dispatch] -_—_
src/codegen/encoding C———1 776% 2031/2618 TSR IEAES
src/codegen/events 0 -_—_
src/codegen/solana_accounts] 96.1 % 535/557 100.0 % 14/14
src/codegen/strength_reduce 1 787% 1072/1363 84.7 % 61/72

src/codegen/subexpression elimination 1 97.9% 1631/ 1666 86.5 % 83 /96

Figure 3.2: Code covered by the solana test. The four rightmost columns are: percentage of
lines covered, number of lines covered, percentage of functions covered, number of functions
covered.

Note that none of the tests in the solana test are specific to code generation. In particular,
there appears to be no test that does the following:

e Compile a Solidity program with optimizations disabled.
e Run the resuling binary on one or more test vectors.

Trail of Bits 14 Solang Security Assessment
CONFIDENTIAL

e Compile the same program with optimizations enabled.
e Run the resulting binary on the same set of test vectors.
e Verify that the two binaries’ outputs are equal.

Ideally, this test would operate on a large number of Solidity programs, and would have
many test vectors for each.

Exploit Scenario
A bug is found in an optimization pass. The bug could have been exposed by more
thorough unit or integration tests.

Recommendations

Short term, add tests to compile code with and without optimizations, and verify that the
resulting binaries behave similarly. Doing so will help increase confidence in the code that
performs optimizations.

Long term, regularly compute and review test coverage using a tool such as
cargo-1lvm-cov. Doing so will help ensure that the tests are relevant and that all
important conditions are tested.

Trail of Bits 15 Solang Security Assessment
CONFIDENTIAL

https://github.com/taiki-e/cargo-llvm-cov

4. Tests do not pass with latest stable Rust
Severity: Informational Difficulty: Undetermined
Type: Testing Finding ID: TOB-SOLCG-4

Target: tests subdirectory

Description

The tests do not pass when built with the latest version of the Rust compiler (1.70.0). To
ensure the code can benefit from compiler bug fixes, the code should be kept up-to-date
with the latest stable Rust.

An error message produced by running the solana test compiled with Rust 1.70.0 appears
in figure 4.1.

thread 'solana_tests::abi_decode::decode_address' panicked at 'misaligned pointer
dereference: address must be a multiple of 0x8 but is 0x7f724841a82c’,
.../solana_rbpf-0.2.38/src/interpreter.rs:270:26

Figure 4.1: Error message produced by running the solana test compiled with Rust 1.70.0

Exploit Scenario

Rust version 1.70.1 fixes a critical bug in the compiler. Because Solang cannot be compiled
with Rust 1.70.0, Solang does not benefit from the bug fix. Eve notices this and exploits the
Solang instance running on Alice’s machine.

Recommendations

Short term, diagnose and fix all tests that do not pass when compiled with Rust 1.70.0.
Doing so will allow the code to benefit from fixes to the current stable version of Rust, and
will ease the transition to the next version.

Long term, regularly test the code with the latest stable Rust. Doing so will help the code to
benefit from compiler bug fixes.

Trail of Bits 16 Solang Security Assessment
CONFIDENTIAL

5. Strength reduction does not properly handle undefined variables
Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-SOLCG-5

Target: codegen/cfg.rs

Description
The strength reduction optimization runs even when undefined variables are present. This

can result in an assertion violation and a panic.

The panic can be observed by making the change depicted in figure 5.1. The panic occurs in
the code in figure 5.2. Two other parts of the call chain appear in figures 5.3 and 5.4.
(Several call frames that would appear between figures 5.3 and 5.4 are omitted.) Note the
comments in figure 5.4, which appears to not accurately reflect the current code.

contract MyTest {
// BEGIN-CHECK: MyTest::MyTest::function::test_this__uint32_address
function test_this(uint32 i, address addr) public view returns (uint32) {
AccountInfo info = tx.accounts[il];
if (info.key == addr) {
// CHECK: branchcond ((load (load (struct %info field 8))) == (arg #1)),
block3, block4
return 0;
} else if (info.lamports == 90) {

Figure 5.1:

tests/codegen_testcases/solidity/load_account_info_members.sol#L5-L12
Changing the highlighted = to ; makes info undefined and causes a panic.

impl Type {
/// Default value for a type, e.g. an empty string. Some types cannot have a
default value,
/// for example a reference to a variable in storage.
pub fn default(&self, ns: &Namespace) -> Option<Expression> {
match self {

Type::Ref(ty) => {
assert! (matches!(ty.as_ref(), Type::Address(_)));

Figure 5.2: codegen/statements. rs#L1440-L1488

Trail of Bits 17 Solang Security Assessment
CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/codegen_testcases/solidity/load_account_info_members.sol#L5-L12
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/statements.rs#L1440-L1488

impl Type {

/// Default value for a type, e.g. an empty string. Some types cannot have a
pub(super) fn expression_values(

expr: &Expression,

vars: &Variables,

ns: &Namespace,
) -> HashSet<Value> {

match expr {

Expression::Undefined { ty } => {
// If the variable is undefined, we can return the default value to
optimize operations
if let Some(default_expr) = ty.default(ns) {
return expression_values(&default_expr, vars, ns);

}

HashSet: :new()
}

Figure 5.3: codegen/strength_reduce/expression_values.rs#L13-L84

/// Detect undefined variables and run codegen optimizer passess
pub fn optimize_and_check_cfg(

cfg: &mut ControlFlowGraph,

ns: &mut Namespace,

func_no: ASTFunction,

opt: &0Options,

) A
reaching_definitions::find(cfg);
if func_no != ASTFunction::None {
// If there are undefined variables, we raise an error and don't run
optimizations
if undefined_variable::find_undefined_variables(cfg, ns, func_no) {
return;
}
}

if opt.constant_folding {
constant_folding: :constant_folding(cfg, ns);

}
if opt.vector_to_slice {
vector_to_slice::vector_to_slice(cfg, ns);

}
if opt.strength_reduce {
strength_reduce: :strength_reduce(cfg, ns);

}
Figure 5.4: codegen/cfg.rs#L1539-L1561

Exploit Scenario
Alice tries to compile her code using the Solang compiler. The compiler crashes without
producing any useful diagnostics.

Trail of Bits 18 Solang Security Assessment
CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/expression_values.rs#L13-L84
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/cfg.rs#L1539-L1561

Recommendations
Short term, eliminate the assertion failure that can occur in the code in figure 5.1. Doing so
will eliminate a panic that could occur in the codegen module.

Long term, incorporate fuzzing into the Cl process. Doing so could help to reveal similar
bugs.

Trail of Bits 19 Solang Security Assessment
CONFIDENTIAL

6. Solang fails to compile struct containing dynamic-sized arrays of its own
type

Severity: Low Difficulty: Low
Type: Data Validation Finding ID: TOB-SOLCG-6

Target: sema module

Description
Solang considers structs containing multidimensional dynamic-sized arrays of its own type
with fixed size innermost arrays to have infinite size, as a result, fails to compile them.

The structs containing a member of its own type or a fixed-size array of its own type are
considered to have infinite size and the compilation of them is not possible. The structs
containing dynamic-size arrays of its own type, irrespective of dimensions, should be
considered to have finite size and compilation should be possible.

Figure 6.1 contains an example struct definition which contains a dynamic-sized array of its
own type with a dynamic-size innermost array.

struct A {
ALI[T]1[2] b;
}
Figure 6.1: Example struct containing dynamic-sized array of its type with a dynamic-sized
innermost array.

Solang correctly considers the struct to have finite size and successfully compiles them.

Figure 6.2 contains an example of struct definition which contains a dynamic-sized array of
its own type but with a fixed-size innermost array. Solang fails to compile them with the
error “struct 'A" has infinite size”.

struct A {
AL2][1][] b;
}
Figure 6.2: Example struct containing dynamic-sized array of its type with fixed-sized innermost
array.
Trail of Bits 20 Solang Security Assessment

CONFIDENTIAL

Exploit Scenario
A contract contains a struct definition containing a dynamic-size array of its own type with a

fixed-size innermost array similar to definition in figure 6.2. The compiler fails with the
error “struct has infinite size”.

Recommendations

Short term, correct the handling of recursive structures, including allowing the code in
figure 6.1. As the code is valid Solidity, it should be accepted.

Long term, improve tests for compilation of recursive structs. Doing so will help to identify
problems like the one described here.

Trail of Bits 21 Solang Security Assessment
CONFIDENTIAL

7. Monolithic test
Severity: Informational Difficulty: High
Type: Testing Finding ID: TOB-SOLCG-7

Target: codegen/strength_reduce/tests.rs

Description
The expresson_known_bits testis approximately 1200 lines (figure 7.1). Large tests can
prevent errors from being caught and can hamper future development.

#[test]
fn expresson_known_bits() {
use crate::Target;
use solang_parser::pt::Loc;

. // just under 1200 lines

assert!(v.known_bits[@]);
assert!(v.value[0]);

Figure 7.1: codegen/strength_reduce/tests.rs#L29-L1230
There are good reasons to break a large test up into multiple, smaller tests.

First, if a large test fails, it could be difficult for a developer to determine the cause. More
specifically, if the test fails on the nth statement, it could be difficult for the developer to
determine which of the n-7 preceding statements contributed to the failure.

Second, an oft overlooked benefit of tests is that they serve as documentation. However, a
monolithic test detracts from this benefit. Suppose a developer wants to know how to use
statement X, which happens to be on line n of the test. If n is large, it could be difficult for
the developer to determine which of the preceding n-1 statements were necessary to use
X.

Exploit Scenario

Alice, a Solang developer, makes a change to the code that causes the
expresson_known_bits test to fail. The amount of time that Alice spends trying to
determine the cause of the failure is more than it would have been had a smaller test
failed.

Trail of Bits 22 Solang Security Assessment
CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/tests.rs#L29-L1230

Recommendations
Short term, break the expresson_known_bits test up into smaller tests. This will make
determining the cause of failures easier and will help streamline future development.

Long term, consider enabling Clippy's too-many-1ines lint and setting its lint level to
deny. Doing so will help limit the size of future tests.

Trail of Bits 23 Solang Security Assessment
CONFIDENTIAL

https://rust-lang.github.io/rust-clippy/master/index.html#/too_many_lines

8. Optimizations hide errors contracts
Severity: Informational Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-SOLCG-8

Target: codegen module

Description

The compiler does not raise an error for contracts containing undefined variables when
optimizations are enabled. As a result, the developer might not be aware of incorrectness
in their contracts.

The compiler runs the remove unused variables optimization before undefined variable
detection. If the undefined variables are not used then the remove unused variables
optimization will remove them and the undefined variable detection cannot find the error.
However, when the optimizations are disabled, the undefined variable will not be removed
and the compiler will raise the undefined variable error.

contract Test {
struct A {
uint256 b;
}

function test() public {
A storage share;
share.b = uint(10);

Figure 8.1: Example contract containing undefined variable.

The share variable is undefined in the above contract. The compiler would raise the
undefined variable error when the contract is compiled without optimizations. However,
with the optimizations, the contract is compiled without any warnings or errors.

Recommendations
Short term, update the implementation to run undefined variables detection before
performing any optimizations.

Long term, write tests to verify the equivalence of the code compiled with and without
optimizations.

Trail of Bits 24 Solang Security Assessment
CONFIDENTIAL

9. Solang compiled contracts can have multiple storage accounts
Severity: High Difficulty: Medium
Type: Data Validation Finding ID: TOB-SOLCG-9

Target: codegen/solana_deploy.rs

Description

The compiler generated constructor code does not ensure the uniqueness of the contract’s
data account which might lead to account confusion issues where a data account different
from the intended data account can be used.

The contract storage is represented using a data account. All the state variables are stored
in that account. The constructor initializes the data account by writing the magic value in
the first eight bytes of the account data. This magic value is used by the contract functions
to verify that the correct data account is passed, ensuring that the correct account is used
for storage.

The constructor does not prevent a user from creating multiple data accounts. Any user
can call the constructor with a new account and the constructor will write the same magic
value to the account. The new account can be used as the storage for the contract. This
allows for use cases where a single deployment of the contract can be used for multiple
instances of it, each with its own storage. All instances will have the same program id but
different data accounts.

The disadvantage of this is that the users and protocols interacting with the contract have
to ensure that the intended data account is being used by the contract, i.e., they are
interacting with the intended instance of the contract.

This approach becomes an issue when a part of the contract’s state is independent of the
storage. For example, if the contract uses a PDA to interact with external contracts then
that PDA can be considered to be part of the contract’s state. The PDA address depends on
the program id and a list of seeds. If the seeds are static and are fixed at the compile time,
the derived PDA address will be independent of the contract’s storage.

When the PDA address is independent of the contract storage and only depends on the
code, all instances of the contract with different storage accounts will use the same PDA
account. This creates an overlap between states of different instances of the contract. An
attacker can exploit this by creating a new data account with storage favorable to them and
using the PDA of existing instances to perform operations and profit from them.

Trail of Bits 25 Solang Security Assessment
CONFIDENTIAL

Exploit Scenario
Consider the contract with the following description:

e The constructor sets the owner state variable to the caller given account.
e The contract owns tokens using the PDA derived from seeds [“token owner”].

e The contract contains the withdraw function which when called by the owner, with
the owner is a signer, transfers tokens owned by the PDA to the owner account.

Bob, the developer, deploys the contract and calls the contract with data account A. The
owner value in account A is owned by Bob. After some time, with the normal usage of the
contract, the PDA derived from [“token owner”] seed owns 1 million worth of tokens.

Eve, an attacker, calls the constructor with data account B. The owner value in account B is
owned by Eve. Eve calls the withdraw function using the data account B and Bob’s PDA.
Because the PDA does not depend on the storage, it will be the same for Eve’s instance as
well. The withdraw function succeeds and Eve steals the tokens owned by Bob.

Recommendations

Short term, consider updating the compiler to ensure uniqueness of the data account for a
given program id and the contract. This can be achieved by ensuring that the data account
is a PDA derived using static seeds. If the feature is needed, add warnings to the developer
documentation explaining the risks with the current approach. Also add the documentation
for external protocols and users interacting with the Solang contract to verify the data
account’s address.

Long term, document the design choices along with the assumptions made and perform a
review to ensure that the selected design choices does not break the system invariants.

Trail of Bits 26 Solang Security Assessment
CONFIDENTIAL

10. An attacker can reinitialize a Solang contract
Severity: High Difficulty: Low
Type: Data Validation Finding ID: TOB-SOLCG-10

Target: codegen/solana_deploy.rs

Description

The compiler generated constructor code does not check that a data account is already
initialized. As a result, an attacker can call the constructor using the initialized data account
and update important state variables.

The contract storage is represented using a data account. All the state variables are stored
in that account. The constructor initializes the data account by writing the magic value in
the first eight bytes of the account data.

Before running the initialization routines, the constructor does not check the account’s
magic value and proceeds with initialization. As a result, the state variables initialized in the
constructor will be updated with the initial values and the caller provided arguments.

Exploit Scenario

contract Test {
address owner;

constructor(address admin) {
owner = admin;

}
[...]

function withdraw() public {
// verify owner is signer and transfer all assets.

}

Figure 10.1: Example contract vulnerable to this issue.

Bob, the developer, deploys the Test contract. He calls the constructor and sets the owner
to his address. After some time, with continuous usage of the contract, the contract owns
assets worth of 10 million USD.

Eve, an attacker, calls the constructor with her address as admin. The constructor updates
the owner variable. Eve calls the withdraw function and steals 10 million USD worth of
assets.

Trail of Bits 27 Solang Security Assessment
CONFIDENTIAL

Recommendations
Short term, update the solana_deploy function to add initialization checks in the
constructor code.

Long term, write a reference implementation in a high level language for every instance of
compiler generated code written using low level codegen instructions. Review the high
level reference implementation and ensure that the low level implementation is equivalent
to the reference implementation.

Trail of Bits 28 Solang Security Assessment
CONFIDENTIAL

11. Compiler does not verify the developer specified size for the data account
Severity: Medium Difficulty: Medium
Type: Data Validation Finding ID: TOB-SOLCG-11

Target: codegen/solana_deploy.rs

Description

The constructor does not ensure the minimum size requirement for the data account while
creating the account using the developer provided value. As a result, the data account
could become unusable during the usage of the contract.

The constructor creates the data account if it is not given by the caller. The data account is
required to have a certain minimum size. The developer can specify the data account size
using the space annotation. The space value could be static, known during the compilation,
or it could be dynamic, given as an argument. The compiler neither performs compile time
checks nor adds run time checks for the space value. If the developer incorrectly calculates
the required size or mistakenly provides the wrong value, the created data account could
have smaller space than required.

The minimum size is referred to as the contract.fixed_layout_size. It represents the

size required to store the contract’s fixed size storage variables. If the data account has size
less than fixed_layout_size, then only the first few variables can be read or written. All

operations which require reading or writing the fixed size variable stored at the end will fail
with out of bounds error.

Because only some of the operations might fail, the issue may not be caught during the
early usage of the contract and the contract could become unusable in an intermediate
state.

Exploit Scenario

contract Test {
address owner;

[...]

bool withdrawn;

@payer(...)

@space(2000)

constructor(address admin) {
owner = admin;

}

Trail of Bits 29 Solang Security Assessment
CONFIDENTIAL

function deposit() public { [...] }

function withdraw() public {
// verify owner is signer and transfer all assets.
// The function writes to the ‘withdrawn' variable.

Figure 11.1: Example contract vulnerable to the issue.

The fixed_layout_size for the above contract is 2048 bytes. Bob, the developer,
mistakenly specifies 2000 bytes in the space annotation. The compiler compiles the code
without any errors. Bob deploys the contract and calls the constructor. The constructor
creates the data account with the size of 2000 bytes and initializes the account.

The deposit operations and other operations succeed without any errors. After some time,
the contract accumulates assets. Bob tries to withdraw the assets using the withdraw
function. The withdraw function writes to the withdrawn variable. The withdrawn
variable is stored after the offset 2000 in the data account. The operation fails with out of
bounds error. The funds are stuck in the contract.

Recommendations

Short term, update the solana_deploy function to check the space value during
compilation if it is static and to add runtime checks to the constructor code if the space
value is a runtime constant.

Long term, Implement the compiler to be strict and perform as many checks as possible.
Develop the compiler with the assumption that the developer will make mistakes and write
incorrect code.

Trail of Bits 30 Solang Security Assessment
CONFIDENTIAL

12. The bump is not guaranteed to be at the end of seeds array
Severity: Low Difficulty: Medium
Type: Undefined Behavior Finding ID: TOB-SOLCG-12

Target: codegen/solana_deploy.rs

Description

The compiler, while constructing the seeds array using the constructor annotations, does
not ensure that the bump value is placed at the end of the array. As a result, the computed
account might not be a valid PDA and the contract initialization might fail.

The developer can specify the seeds and bump value for a PDA using the constructor
annotations. The compiler uses the seeds in the specified order for signing the PDA
account. It considers the bump value as just another seed value and includes it in the
specified position.

for note in &func.annotations {
match note {
ConstructorAnnotation: :Seed(seed) => {
seeds.push(expression(seed, cfg, contract_no, None, ns, vartab, opt));
}
ConstructorAnnotation: :Bump(bump) => {
let expr = ast::Expression::Cast {
loc: Loc::Codegen,
to: Type::Slice(Type::Bytes(1).into())
expr: ast::Expression::BytesCast {
loc: Loc::Codegen,
to: Type::DynamicBytes,
from: Type::Bytes(1),
expr: bump.clone().into(),
}
.into(),

|3

seeds.push(expression(&expr, cfg, contract_no, None, ns, vartab, opt));

}
- => (),

Figure 12.1: codegen/solana_deploy. rs#L463—-L484

However, the bump value is expected to be the last seed and should be placed at the end
of the array. The developer might work with the assumption that the compiler will place the

Trail of Bits 31 Solang Security Assessment
CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/solana_deploy.rs#L463-L484

bump value at the end irrespective of the position of its annotation. If the developer places
a seed annotation after the bump annotation, the order of seeds used by the compiler will
be different from the order expected by the developer.

Because the order of the seeds decides the derived PDA account, the derived address will
be different than the expected and it might not be a valid account. The derived PDA
account is needed for contract initialization. As a result, the contract might need to be
redeployed after updating the position of bump annotation.

Exploit Scenario

contract Test {

@payer(...)

@space(64)

@seed("A")

@bump("x")

@seed("B")
constructor() { [...] }
[...]

Figure 12.2: Example contract vulnerable to the issue.

Bob, the developer, expects the seeds array for the PDAto be [“A”, “B”, “x"].The
seeds used by the compiler for the PDA will be [“A”, “x”, “B”].Bob provides the
account derived from his seeds. The compiler tries to sign the instruction with the
computed seeds resulting in a different PDA. The create account instruction is not signed
by the account and the instruction fails.

The PDA derived using the compiler’s order of the seed might not be valid PDA and the
data account cannot be created using it. The contract needs to be redeployed with
corrected annotations.

Recommendations
Short term, raise an error if the developer places the bump annotation before a seed
annotation. Otherwise, consider placing the bump value at the end irrespective of the
annotation’s position.

Long term, Implement the compiler considering the expectations of the developer.
Document the instances where the compiler diverges from these expectations.

Trail of Bits 32 Solang Security Assessment
CONFIDENTIAL

13. Appending state variables to Solang contracts affects their storage layout
Severity: High Difficulty: High
Type: Undefined Behavior Finding ID: TOB-SOLCG-13

Target: https://solang.readthedocs.io

Description

Adding new state variables to the Solang contract will change the storage layout. This is
different from Ethereum Solidity contracts. Developers not aware of the difference might
brick their contract by updating it with a contract containing additional state variables.

The Solang contract uses Solana account data, a linear bytearray, for storage. The
bytearray is divided into two sections using the offset contract.fixed_layout_size.
The space from offset @ to fixed_layout_size is used for storing fixed size storage
variables. The space from the fixed_layout_size index is considered to be a heap and is
used for storing dynamic size variables.

The fixed_layout_size depends on the contract’s fixed size state variables. The state
variables are stored in the defined order. Appending new fixed size variables would
increase the fixed_layout_size. The new variables will be stored from the old
fixed_layout_size offset.

As a result, if the contract is updated with a contract containing new fixed size state
variables, the new variables will be stored in the heap space of the old contract. This
corrupts the heap and results in a invalid state for the contract.

Exploit Scenario

Bob, the developer of a contract, adds new fixed size state variables to the contract and
updates the old contract using the new contract. Bob executes a function which writes to
the first variable of the new state variables. The first variable is stored at the start of the
heap of the old contract. The function overwrites the heap and corrupts the contract’s
state. The contract becomes unusable.

Recommendations
Short term, add developer documentation to inform the issues with updating to a contract
with new state variables.

Long term, list the differences between Ethereum Solidity contracts and Solang contracts.
Review the effects of these differences and document the issues stemming from the
differences.

Trail of Bits 33 Solang Security Assessment
CONFIDENTIAL

https://solang.readthedocs.io/

Trail of Bits 34 Solang Security Assessment
CONFIDENTIAL

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category

Access Controls
Auditing and Logging
Authentication
Configuration
Cryptography

Data Exposure

Data Validation
Denial of Service
Error Reporting
Patching

Session Management
Testing

Timing

Undefined Behavior

Trail of Bits
CONFIDENTIAL

Description

Insufficient authorization or assessment of rights
Insufficient auditing of actions or logging of problems
Improper identification of users

Misconfigured servers, devices, or software components
A breach of system confidentiality or integrity
Exposure of sensitive information

Improper reliance on the structure or values of data
A system failure with an availability impact

Insecure or insufficient reporting of error conditions
Use of an outdated software package or library
Improper identification of authenticated users
Insufficient test methodology or test coverage

Race conditions or other order-of-operations flaws

Undefined behavior triggered within the system

35 Solang Security Assessment

Severity Levels
Severity

Informational

Undetermined
Low

Medium

High

Description

The issue does not pose an immediate risk but is relevant to security best
practices.

The extent of the risk was not determined during this engagement.
The risk is small or is not one the client has indicated is important.

User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels
Difficulty
Undetermined

Low
Medium

High

Trail of Bits
CONFIDENTIAL

Description
The difficulty of exploitation was not determined during this engagement.

The flaw is well known; public tools for its exploitation exist or can be
scripted.

An attacker must write an exploit or will need in-depth knowledge of the
system.

An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

36 Solang Security Assessment

B. Non-Security-Related Findings

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the

future.

e Reorganize the repository so that the root manifest is virtual, i.e., a workspace
only. Currently, the root manifest describes both a package and a workspace (figure
B.1). The current organization complicates commands such as cargo test, as
--workspace must be passed for the command to apply to the whole workspace,

and not just the root package.

[package]
name = "solang"

[workspace]
members = ["solang-parser", "tests/wasm_host_attr"]

Figure B.1: Cargo.toml#L1-L103

e Have the build script check that the correct version of 11vm-config is referred
to by PATH. The expected version of 11vm-config has the SBF target. The build
script could run 11vm-config --targets-built and verify that SBF appearsin
the output (see figure B.2). Currently, if the wrong 11vm-config is referred to by
PATH, the build script will complete without error.

$ 1llvm-config --targets-built
AArch64 AMDGPU ARM AVR BPF Hexagon Lanai Mips MSP43@ NVPTX PowerPC RISCV SBF

Sparc SystemZ VE WebAssembly X86 XCore
Figure B.2: Output produced by the expected (patched) version of 11vm-config

e Adopt a consistent import format. (See figure B.3.) Doing so will make it easier to
determine what symbols are imported and from where. Rustfmt’s (unstable)
imports_granularity and group_imports configurations could help with this.

use self::{
cfg::{optimize_and_check_cfg, ControlFlowGraph, Instr},

dispatch::function_dispatch,
expression: :expression,
solana_accounts: :account_collection::collect_accounts_from_contract,

vartable::Vartable,
¥
use crate::codegen::cfg::ASTFunction;

Figure B.3: codegen/mod. rs#L27-L43

Trail of Bits 37 Solang Security Assessment
CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/Cargo.toml#L1-L103
https://github.com/rust-lang/rustfmt/blob/master/Configurations.md#imports_granularity
https://github.com/rust-lang/rustfmt/blob/master/Configurations.md#group_imports
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/mod.rs#L27-L43

e Run Clippy’s pedantic lints in CI. As previously reported (TOB-SOLANG-3 in the
“Solang Parser and Semantic Analysis” report), Clippy’s pedantic lints produce many
warnings when applied to the codebase. Addressing them would improve the
quality of the code. Example warnings appear in figures B.4 through B.7.

warning: redundant closure
--> src/codegen/cfg.rs:1802:14

I
1802 | .map(|stmt| stmt.reachable())
| ANAANNANNANANNANNAAANAA help: replace the closure with the

method itself: “sema::ast::Statement::reachable’

= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_closure_fo
r_method_calls

Figure B.4: Warning produced by redundant_closure_for_method_calls

warning: implicitly cloning a "Vec® by calling “to_vec® on its dereferenced
type
--> src/codegen/expression.rs:2519:16

I
2519 | value: id.to_vec(),
| AMANAAANAAA help: consider using: “id.clone()"

I
= help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#implicit_clone

Figure B.5: Warning produced by implicit_clone

warning: used ‘cloned’ where ‘copied’ could be used instead
--> src/codegen/solana_accounts/account_management.rs:21:14

21 .cloned()

I
| AAAAAAN help: try: “copied’
I

help: for further information visit
https://rust-lang.github.io/rust-clippy/master/index.html#cloned_instead_of_co
pied

Figure B.6: Warning produced by cloned_instead_of_copied

warning: it is more concise to loop over containers instead of using explicit
iteration methods
--> src/codegen/strength_reduce/mod.rs:91:29

I
91 | for (block_no, vars) in block_vars.into_iter() {
| AANAAAAAAAANAANAAAANANAANAAANANAAAANAN help: to Write this

more concisely, try: “block_vars’

= help: for further information visit

Trail of Bits 38 Solang Security Assessment
CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/cfg.rs#L1802
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_closure_for_method_calls
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_closure_for_method_calls
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/expression.rs#L2519
https://rust-lang.github.io/rust-clippy/master/index.html#implicit_clone
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/solana_accounts/account_management.rs#L21
https://rust-lang.github.io/rust-clippy/master/index.html#cloned_instead_of_copied
https://rust-lang.github.io/rust-clippy/master/index.html#cloned_instead_of_copied
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/mod.rs#L91

https://rust-lang.github.io/rust-clippy/master/index.html#explicit_into_iter_1
oop

Figure B.7: Warning produced by explicit_into_iter_loop

e Eliminate the unnecessary use of mut in figure B.8.

warning: variable does not need to be mutable
--> src/codegen/subexpression_elimination/mod.rs:165:13

165 let mut cur_block = &mut cfg.blocks[*block_no];

AAAAAANAAAN

|
|
|
| help: remove this "mut’
|

note: “#[warn(unused_mut)]" on by default

Figure B.8: Warning produced by unused_mut

e Change the use of borrow_mut to borrow in figure B.9. Using borrow_mut
unnecessarily could result in a panic. (Note: unnecessary_borrow_mut is a Dylint
lint.)

warning: borrowed reference is used only immutably
-->

src/codegen/subexpression_elimination/available_expression_set.rs:368:43

|
368 | for (child_id, node) in &var_node.borrow_mut().children {
| AAANAAANAAANAAAAN help: use:
“borrow()"

= note: ‘#[warn(unnecessary_borrow_mut)]' on by default

Figure B.9: Warning produced by unnecessary_borrow_mut

e Eliminate the unnecessary call to as_bytes in figure B.10. (Note:
unnecessary_conversion_for_trait is a Dylintlint.)

warning: the receiver implements the required traits
--> src/codegen/events/solana.rs:34:23

34 | hasher.update(discriminator_image.as_bytes());
| AAAAAAAAAAANAANAAAANAANAAANAANAAANAANAANANAAAAAN help use:

‘&discriminator_image"
Figure B.10: Warning produced by unnecessary_conversion_for_trait
e Eliminate the duplicate dependencies that appear in the root manifest.

Packages sha2 and tempfile appear as both regular and “dev” dependencies. It is
sufficient that they appear as just regular dependencies.

Trail of Bits 39 Solang Security Assessment
CONFIDENTIAL

https://rust-lang.github.io/rust-clippy/master/index.html#explicit_into_iter_loop
https://rust-lang.github.io/rust-clippy/master/index.html#explicit_into_iter_loop
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/mod.rs#L165
https://github.com/trailofbits/dylint/tree/master/examples/supplementary/unnecessary_borrow_mut
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/available_expression_set.rs#L368
https://github.com/trailofbits/dylint/tree/master/examples/supplementary/unnecessary_conversion_for_trait
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/events/solana.rs#L34

[dependencies]
tempfile = "3.4"
sha2 = "6.10"
i&év-dependencies]
éhéZ = "0.10"
ééﬁpfile = "3.3"
Figure B.11: Cargo. toml#L18-L85

e Eliminate the corner case that can cause test_mul_within_range_signed to
fail. If first_operand_randis -22(N-1) and second_op is -1, the multiplication
will overflow.

#[test]

fn test_mul_within_range_signed() {
let mut rng = rand::thread_rng();
for width in (8..=256).step_by(8) {

// The range of values that can be held in signed N bits is [-2*(N-1)
2A(N-1)-1]. Here we generate a random number within this range and multiply it
by -1, 1 or @.

let first_operand_rand = rng.gen_bigint(width - 1).sub(1_u32);

println!("First op : {first_operand_rand:?}");

let side = vec![-1, 0, 1];

// -1, 1 or @

let second_op = BigInt::from(*side.choose(&mut rng).unwrap());
println!("second op : {second_op:?}");

Figure B.12: tests/solana_tests/primitives.rs#L989-L1011

e Replace the call to BigUint: :pow followed by truncate_biguint (figure B.13)
with just one call to BigUint: :modpow (figure B.14). Doing so will make the uint
test more efficient.

let mut res = a.clone().pow(n);
truncate_biguint(&mut res, width);

Figure B.13: tests/solana_tests/primitives. rs#L543-L544

let res = a

.clone()

.modpow(&BigUint::from(n), &BigUint::from(2u64).pow(width as u32));
// truncate_biguint(&mut res, width);

Figure B.14: Proposed change to the code in figure B.13

Trail of Bits 40 Solang Security Assessment
CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/Cargo.toml#L18-L85
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana_tests/primitives.rs#L989-L1011
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana_tests/primitives.rs#L543-L544

e Check both sides of the boundary condition in the code in figure B.15, i.e., add
code like in figure B.16 to transfer_fails_not_enough. Doing so will help
increase confidence in the transfer_fails_not_enough test.

let res = vm.function_must_fail(
"transfer",
&[
BorshToken: :FixedBytes(new.to_vec()),
BorshToken: :Uint {
width: 64,
value: BigInt::from(104u8),
H
1,
);

assert!(res.is_err());

Figure B.15: tests/solana_tests/balance.rs#L256-L266

let res = vm.function_must_fail(
"transfer"”,
&[
BorshToken: :FixedBytes(new.to_vec()),
BorshToken: :Uint {
width: 64,
value: BigInt::from(103u8),
e
1,
);

assert!(res.is_ok());

Figure B.16: Proposed change to the code in figure B.13

A similar recommendation applies to the transfer_fails_overflow test (see
figure B.17).

let res = vm.function_must_fail(
"transfer",
&[
BorshToken: :FixedBytes(new.to_vec()),
BorshToken: :Uint {
width: 64,
value: BigInt::from(104u8),
e
1,
);

assert!(res.is_err());

Figure B.17: tests/solana_tests/balance.rs#L297-.307

e Rename the following methods to better communicate what they do:

Trail of Bits 41 Solang Security Assessment
CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana_tests/balance.rs#L256-L266
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana_tests/balance.rs#L297-L307

o function_must_fail = function_may_fail
o edges — successors
o clone_for_parent_block — deep_clone

e Correct the grammar in the comments in figures B.18 and B.19.

/// When a reaching definition change, we remove the variable node and all its

descendants from
/// the graph

Figure B.18:
codegen/subexpression_elimination/available_expression_set.rs#L358-L359
(“change” should likely be “changes”)

/// Regenerate instructions after that we exchanged common subexpressions for
temporaries

Figure B.19: codegen/subexpression_elimination/instruction.rs#L2063
(“exchanged” should likely be “exchange”)

e Swap the comments in figure B.20, which appear to be associated with the
wrong functions.

/// Get the maximum unsigned value in a set
pub(super) fn set_max_signed(set: &HashSet<Value>) -> Option<BigInt> {

/// Get the maximum signed value in a set
pub(super) fn set_max_unsigned(set: &HashSet<Value>) -> BigInt {

Figure B.20: codegen/strength_reduce/value.rs#L69-L95

e Correct the typo in expresson_known_bits (figure B.21).

fn expresson_known_bits() {

Figure B.21: codegen/strength_reduce/tests. rs#L30
(expresson should be expression)

e Rewrite the code in figure B.22 to use unwrap or expect. Doing so will make the
code more clear.

if let Some(block_vars) = block_vars.get_mut(&edge) {

} else {
unreachable! ();

}

Trail of Bits 42 Solang Security Assessment
CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana.rs#L1581
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/cfg.rs#L422
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/available_expression_set.rs#L17
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/available_expression_set.rs#L358-L359
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/instruction.rs#L203
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/value.rs#L69-L95
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/tests.rs#L30

Figure B.22: codegen/dead_storage.rs#L149-L171

e Use named constants in place of magic numbers throughout the code. Doing
so will make the code more clear. Examples where magic numbers are used appear
in figures B.23 though B.25.

let lamports_runtime_constant = (128 + space_runtime_constant) * 3480 * 2;

Figure B.23: codegen/solana_deploy.rs#L342

flow[block_1] = BigRational::from_integer(1000.into());

Figure B.24:
codegen/subexpression_elimination/anticipated_expressions.rs#L118

&& BigRational::from_integer(2000.into()) == *flow_magnitude

Figure B.25:
codegen/subexpression_elimination/anticipated_expressions.rs#L161

In some cases, even replacing @ with a named constant would make the code more
clear. For example, in figure B.26, @ might be replaced with ENTRY_BLOCK.

vars[@].clone()

Figure B.26: codegen/dead_storage.rs#L114

e Add a comment explaining why it is acceptable that the highest_set_bit
function (figure B.27) returns 0 for both 0 and 1. While this behavior doesn't
appear to cause a problem now, the function could easily be misused in future code.

fn highest_set_bit(bs: &[u8]) -> usize {
for (i, b) in bs.iter().enumerate().rev() {
if *b 1= 0 {
return (i + 1) * 8 - bs[i].leading_zeros() as usize - 1;

}
}
0
}
Figure B.27: codegen/strength_reduce/mod. rs#L569-L577
Trail of Bits 43 Solang Security Assessment

CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/dead_storage.rs#L149-L171
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/solana_deploy.rs#L342
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/anticipated_expressions.rs#L118
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/anticipated_expressions.rs#L161
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/dead_storage.rs#L114
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/mod.rs#L569-L577

