
 Solang Code Generation
 Security Assessment (Summary Report)

 July 12, 2023

 Prepared for:

 Sean Young
 Solana Labs

 Prepared by: Samuel Moelius and Vara Prasad Bandaru

 About Trail of Bits

 Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
 assessment and advisory services to some of the world’s most targeted organizations. We
 combine high- end security research with a real -world attacker mentality to reduce risk and
 fortify code. With 100+ employees around the globe, we’ve helped secure critical software
 elements that support billions of end users, including Kubernetes and the Linux kernel.

 We maintain an exhaustive list of publications at https://github.com/trailofbits/publications ,
 with links to papers, presentations, public audit reports, and podcast appearances.

 In recent years, Trail of Bits consultants have showcased cutting-edge research through
 presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
 the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

 We specialize in software testing and code review projects, supporting client organizations
 in the technology, defense, and finance industries, as well as government entities. Notable
 clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

 Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
 projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
 MakerDAO, Matic, Uniswap, Web3, and Zcash.

 To keep up to date with our latest news and announcements, please follow @trailofbits on
 Twitter and explore our public repositories at https://github.com/trailofbits . To engage us
 directly, visit our “Contact” page at https://www.trailofbits.com/contact , or email us at
 info@trailofbits.com .

 Trail of Bits, Inc.
 228 Park Ave S #80688
 New York, NY 10003
 https://www.trailofbits.com
 info@trailofbits.com

 Trail of Bits 1 Solang Security Assessment
 CONFIDENTIAL

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

 Notices and Remarks

 Copyright and Distribution
 © 2023 by Trail of Bits, Inc.

 All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
 report in the United Kingdom.

 This report is considered by Trail of Bits to be business confidential information; it is
 licensed to Solana Labs under the terms of the project statement of work and intended
 solely for internal use by Solana Labs. Material within this report may not be reproduced or
 distributed in part or in whole without the express written permission of Trail of Bits.

 The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page .
 Reports accessed through any source other than that page may have been modified and
 should not be considered authentic.

 Test Coverage Disclaimer
 All activities undertaken by Trail of Bits in association with this project were performed in
 accordance with a statement of work and agreed upon project plan.

 Security assessment projects are time-boxed and often reliant on information that may be
 provided by a client, its affiliates, or its partners. As a result, the findings documented in
 this report should not be considered a comprehensive list of security issues, flaws, or
 defects in the target system or codebase.

 Trail of Bits uses automated testing techniques to rapidly test the controls and security
 properties of software. These techniques augment our manual security review work, but
 each has its limitations: for example, a tool may not generate a random edge case that
 violates a property or may not fully complete its analysis during the allotted time. Their use
 is also limited by the time and resource constraints of a project.

 Trail of Bits 2 Solang Security Assessment
 CONFIDENTIAL

https://github.com/trailofbits/publications

 Table of Contents

 About Trail of Bits 1
 Notices and Remarks 2
 Table of Contents 3
 Executive Summary 4
 Project Summary 5
 Project Goals 6
 Project Targets 7
 Summary of Findings 8
 Detailed Findings 10

 1. Dependency with open RUSTSEC advisory 10
 2. Outdated dependencies 12
 3. Insufficient test coverage 14
 4. Tests do not pass with latest stable Rust 16
 5. Strength reduction does not properly handle undefined variables 17
 6. Solang fails to compile struct containing dynamic-sized arrays of its own type 20
 7. Monolithic test 22
 8. Optimizations hide errors contracts 24
 9. Solang compiled contracts can have multiple storage accounts 25
 10. An attacker can reinitialize a Solang contract 27
 11. Compiler does not verify the developer specified size for the data account 29
 12. The bump is not guaranteed to be at the end of seeds array 31
 13. Appending state variables to Solang contracts affects their storage layout 33

 A. Vulnerability Categories 35
 B. Non-Security-Related Findings 37

 Trail of Bits 3 Solang Security Assessment
 CONFIDENTIAL

 Executive Summary

 Engagement Overview
 Solana Labs engaged Trail of Bits to review the security of Solang’s codegen module,
 specifically in how it generates Solana code.

 A team of two consultants conducted the review from June 23 to July 12, 2023, for a total of
 four engineer-weeks of effort. With full access to source code and documentation, we
 performed static and dynamic testing of the codebase, using automated and manual
 processes.

 Observations and Impact
 As discussed under TOB-SOLCG-3 , there are no tests to verify that unoptimized and
 optimized code behave the same. During the project kickoff call, the Solang team described
 an improperly applied optimization as a “worst case scenario.” Having tests to help verify
 the optimization passes’ correctness is the best way to defend against such possibilities.
 Hence, we highly recommend that such tests be added.

 The following tables provide the number of findings by severity and category.

 EXPOSURE ANALYSIS

 Severity Count

 High 3

 Medium 1

 Low 3

 Informational 6

 Undetermined 0

 CATEGORY BREAKDOWN

 Category Count

 Data Validation 5

 Patching 2

 Testing 3

 Undefined Behavior 3

 Trail of Bits 4 Solang Security Assessment
 CONFIDENTIAL

 Project Summary

 Contact Information
 The following managers were associated with this project:

 Dan Guido , Account Manager Jeff Braswell , Project Manager
 dan@trailofbits.com jeff.braswell@trailofbits.com

 The following engineers were associated with this project:

 Samuel Moelius , Consultant Vara Prasad Bandaru , Consultant
 samuel.moelius@trailofbits.com vara.bandaru@trailofbits.com

 Project Timeline
 The significant events and milestones of the project are listed below.

 Date Event

 June 15, 2023 Technical Onboarding call

 June 23, 2023 Pre-project kickoff call

 June 30, 2023 Status update meeting #1

 July 12, 2023 Delivery of report draft

 July 12, 2023 Report readout meeting

 Trail of Bits 5 Solang Security Assessment
 CONFIDENTIAL

mailto:dan@trailofbits.com

 Project Goals

 The engagement was scoped to provide a security assessment of the Solang’s codegen
 module, specifically in how it generates Solana code. We sought to answer the following
 non-exhaustive list of questions:

 ● Does code emitted by the codegen module preserve the semantics of the original
 source code?

 ● Are optimizations applied under appropriate circumstances?

 ● Do optimizations preserve the semantics of the unoptimized code?

 ● Does Solang’s codegen strategy introduce behavior that would be surprising to
 Solidity or Solana developers?

 Trail of Bits 6 Solang Security Assessment
 CONFIDENTIAL

 Project Targets

 The engagement involved a review and testing of the following target.

 Solang codegen module
 Repository https://github.com/hyperledger/solang/tree/main/src/codegen

 Version a84b0ad3b67a17b524ef6b7437fd4c5376833807

 Type Rust/Solidity

 Platform Solana

 Trail of Bits 7 Solang Security Assessment
 CONFIDENTIAL

 Summary of Findings

 The table below summarizes the findings of the review, including type and severity details.

 ID Title Type Severity

 1 Dependency with open RUSTSEC advisory Patching Informational

 2 Outdated dependencies Patching Informational

 3 Insufficient test coverage Testing Informational

 4 Tests do not pass with latest stable Rust Testing Informational

 5 Strength reduction does not properly handle
 undefined variables

 Data Validation Low

 6 Solang fails to compile struct containing
 dynamic-sized arrays of its own type

 Data Validation Low

 7 Monolithic test Testing Informational

 8 Optimizations hide errors contracts Undefined
 Behavior

 Informational

 9 Solang compiled contracts can have multiple
 storage accounts

 Data Validation High

 10 An attacker can reinitialize a Solang contract Data Validation High

 11 Compiler does not verify the developer specified
 size for the data account

 Data Validation Medium

 12 The bump is not guaranteed to be at the end of
 seeds array

 Undefined
 Behavior

 Low

 Trail of Bits 8 Solang Security Assessment
 CONFIDENTIAL

 13 Appending state variables to Solang contracts
 affects their storage layout

 Undefined
 Behavior

 High

 Trail of Bits 9 Solang Security Assessment
 CONFIDENTIAL

 Detailed Findings

 1. Dependency with open RUSTSEC advisory

 Severity: Informational Difficulty: Undetermined

 Type: Patching Finding ID: TOB-SOLCG-1

 Target: Cargo.lock

 Description
 The borsh dependency (which the codegen module relies upon) has an outstanding
 RUSTSEC advisory . A fix has been merged, but apparently not released. Solang should use
 an updated version of borsh as soon as one is released with the fix.

 The following is an excerpt from the RUSTSEC advisory:

 Affected versions of borsh cause undefined behavior when zero-sized-types (ZST)
 are parsed and the Copy/Clone traits are not implemented/derived. For instance
 if 1000 instances of a ZST are deserialized, and the ZST is not copy (this can be
 achieved through a singleton), then accessing/writing to deserialized data will
 cause a segmentation fault.

 There is currently no way for borsh to read data without also providing a Rust
 type. Therefore, if not [sic] ZST are used for serialization, then you are not affected
 by this issue.

 A fix was merged on June 7, 2023. However, as of this writing, the fix does not appear in
 any release.

 Note: cargo-audit warns about dependencies besides borsh . However, none of those
 dependencies are used by the codegen module.

 Exploit Scenario
 Alice, a Solang developer, writes a test that uses zero sum types. Eve learns of this fact, and
 exploits the bug on Alice’s machine.

 Recommendations
 Short term, watch the borsh repository, and switch to a new version of borsh as soon as
 one is released with the fix. Doing so will help ensure that Solang developers and users do
 not use vulnerable dependencies.

 Trail of Bits 10 Solang Security Assessment
 CONFIDENTIAL

https://rustsec.org/advisories/RUSTSEC-2023-0033
https://github.com/near/borsh-rs/pull/145
https://github.com/RustSec/rustsec/tree/main/cargo-audit

 Long term, regularly run cargo-audit over the codebase. Doing so will help to identify
 vulnerable or unmaintained dependencies.

 References
 ● RUSTSEC-2023-0033: Parsing borsh messages with ZST which are not-copy/clone is

 unsound
 ● BorshDeserialize can cause UB by copying zero sized objects with no safe Copy impl
 ● Forbid Zero-sized types from deserialization

 Trail of Bits 11 Solang Security Assessment
 CONFIDENTIAL

https://github.com/RustSec/rustsec/tree/main/cargo-audit
https://rustsec.org/advisories/RUSTSEC-2023-0033
https://rustsec.org/advisories/RUSTSEC-2023-0033
https://github.com/near/borsh-rs/issues/19
https://github.com/near/borsh-rs/pull/145

 2. Outdated dependencies

 Severity: Informational Difficulty: High

 Type: Patching Finding ID: TOB-SOLCG-2

 Target: Cargo.toml

 Description
 Updated versions of many of the codegen module’s dependencies are available. Because
 silent bug fixes are common, all dependencies should be periodically reviewed and
 updated wherever possible.

 Note that some of these outdated dependencies have updated versions that are
 considered incompatible by Cargo; because of this, simply running cargo update will not
 cause them to be updated in the project’s Cargo.lock file. Dependencies for which
 incompatible upgrades are available appear in table 2.1.

 Dependency Version currently in use Latest version available

 itertools 0.10.5 (Sep 18, 2022) 0.11.0 (Jun 22, 2023)

 indexmap 1.9.3 (Mar 24, 2023) 2.0.0 (Jun 23, 2023)

 anchor-syn 0.27.0 (Mar 8, 2023) 0.28 (Jun 9, 2023)

 Table 2.1: Dependencies for which incompatible upgrades are available

 Note: Dependencies besides those of table 2.1 can be upgraded. However, none of those
 dependencies are used by the codegen module.

 Exploit Scenario
 Eve learns of a vulnerability in an outdated version of a codegen dependency. Knowing
 that the codegen module still relies on this outdated version, Eve exploits the vulnerability.

 Recommendations
 Short term, update the dependencies to their latest versions wherever possible. Verify that
 all unit tests pass following such updates. Document any reasons for not updating a
 dependency. Using out-of-date dependencies could mean critical bug fixes are missed.

 Trail of Bits 12 Solang Security Assessment
 CONFIDENTIAL

 Long term, regularly run cargo upgrade --incompatible . This will help ensure that the
 project stays up to date with its dependencies.

 Trail of Bits 13 Solang Security Assessment
 CONFIDENTIAL

 3. Insu�cient test coverage

 Severity: Informational Difficulty: High

 Type: Testing Finding ID: TOB-SOLCG-3

 Target: tests subdirectory

 Description
 Much of the codegen module is not covered by any test. Most notably, code related to
 optimizations is inadequately tested.

 The tests most applicable to generating Solana code are the codegen and solana tests.
 Figures 3.1 and 3.2 summarize the code covered by these tests, respectively.

 Figure 3.1: Code covered by the codegen test. The four rightmost columns are: percentage of
 lines covered, number of lines covered, percentage of functions covered, number of functions

 covered.

 Figure 3.2: Code covered by the solana test. The four rightmost columns are: percentage of
 lines covered, number of lines covered, percentage of functions covered, number of functions

 covered.

 Note that none of the tests in the solana test are specific to code generation. In particular,
 there appears to be no test that does the following:

 ● Compile a Solidity program with optimizations disabled.
 ● Run the resuling binary on one or more test vectors.

 Trail of Bits 14 Solang Security Assessment
 CONFIDENTIAL

 ● Compile the same program with optimizations enabled.
 ● Run the resulting binary on the same set of test vectors.
 ● Verify that the two binaries’ outputs are equal.

 Ideally, this test would operate on a large number of Solidity programs, and would have
 many test vectors for each.

 Exploit Scenario
 A bug is found in an optimization pass. The bug could have been exposed by more
 thorough unit or integration tests.

 Recommendations
 Short term, add tests to compile code with and without optimizations, and verify that the
 resulting binaries behave similarly. Doing so will help increase confidence in the code that
 performs optimizations.

 Long term, regularly compute and review test coverage using a tool such as
 cargo-llvm-cov . Doing so will help ensure that the tests are relevant and that all
 important conditions are tested.

 Trail of Bits 15 Solang Security Assessment
 CONFIDENTIAL

https://github.com/taiki-e/cargo-llvm-cov

 4. Tests do not pass with latest stable Rust

 Severity: Informational Difficulty: Undetermined

 Type: Testing Finding ID: TOB-SOLCG-4

 Target: tests subdirectory

 Description
 The tests do not pass when built with the latest version of the Rust compiler (1.70.0). To
 ensure the code can benefit from compiler bug fixes, the code should be kept up-to-date
 with the latest stable Rust.

 An error message produced by running the solana test compiled with Rust 1.70.0 appears
 in figure 4.1.

 thread 'solana_tests::abi_decode::decode_address' panicked at 'misaligned pointer
 dereference: address must be a multiple of 0x8 but is 0x7f724841a82c',
 .../solana_rbpf-0.2.38/src/interpreter.rs:270:26

 Figure 4.1: Error message produced by running the solana test compiled with Rust 1.70.0

 Exploit Scenario
 Rust version 1.70.1 fixes a critical bug in the compiler. Because Solang cannot be compiled
 with Rust 1.70.0, Solang does not benefit from the bug fix. Eve notices this and exploits the
 Solang instance running on Alice’s machine.

 Recommendations
 Short term, diagnose and fix all tests that do not pass when compiled with Rust 1.70.0.
 Doing so will allow the code to benefit from fixes to the current stable version of Rust, and
 will ease the transition to the next version.

 Long term, regularly test the code with the latest stable Rust. Doing so will help the code to
 benefit from compiler bug fixes.

 Trail of Bits 16 Solang Security Assessment
 CONFIDENTIAL

 5. Strength reduction does not properly handle undefined variables

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-SOLCG-5

 Target: codegen/cfg.rs

 Description
 The strength reduction optimization runs even when undefined variables are present. This
 can result in an assertion violation and a panic.

 The panic can be observed by making the change depicted in figure 5.1. The panic occurs in
 the code in figure 5.2. Two other parts of the call chain appear in figures 5.3 and 5.4.
 (Several call frames that would appear between figures 5.3 and 5.4 are omitted.) Note the
 comments in figure 5.4, which appears to not accurately reflect the current code.

 contract MyTest {
 // BEGIN-CHECK: MyTest::MyTest::function::test_this__uint32_address
 function test_this (uint32 i , address addr) public view returns (uint32) {

 AccountInfo info = tx.accounts [i];
 if (info.key == addr) {

 // CHECK: branchcond ((load (load (struct %info field 0))) == (arg #1)),
 block3, block4

 return 0 ;
 } else if (info.lamports == 90) {

 Figure 5.1:
 tests/codegen_testcases/solidity/load_account_info_members.sol#L5–L12

 Changing the highlighted = to ; makes info undefined and causes a panic.

 impl Type {
 /// Default value for a type, e.g. an empty string. Some types cannot have a

 default value,
 /// for example a reference to a variable in storage.
 pub fn default (& self , ns: & Namespace) -> Option <Expression> {

 match self {
 ...
 Type::Ref(ty) => {

 assert! (matches! (ty.as_ref(), Type::Address(_)));
 ...

 }

 Figure 5.2: codegen/statements.rs#L1440–L1488

 Trail of Bits 17 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/codegen_testcases/solidity/load_account_info_members.sol#L5-L12
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/statements.rs#L1440-L1488

 impl Type {
 /// Default value for a type, e.g. an empty string. Some types cannot have a

 pub (super) fn expression_values (
 expr: & Expression ,
 vars: & Variables ,
 ns: & Namespace ,

) -> HashSet <Value> {
 match expr {

 ...
 Expression::Undefined { ty } => {

 // If the variable is undefined, we can return the default value to
 optimize operations

 if let Some (default_expr) = ty.default(ns) {
 return expression_values(&default_expr, vars, ns);

 }

 HashSet::new()
 }

 Figure 5.3: codegen/strength_reduce/expression_values.rs#L13–L84

 /// Detect undefined variables and run codegen optimizer passess
 pub fn optimize_and_check_cfg (

 cfg: & mut ControlFlowGraph,
 ns: & mut Namespace,
 func_no: ASTFunction ,
 opt: & Options ,

) {
 reaching_definitions::find(cfg);
 if func_no != ASTFunction:: None {

 // If there are undefined variables, we raise an error and don't run
 optimizations

 if undefined_variable::find_undefined_variables(cfg, ns, func_no) {
 return ;

 }
 }
 if opt.constant_folding {

 constant_folding::constant_folding(cfg, ns);
 }
 if opt.vector_to_slice {

 vector_to_slice::vector_to_slice(cfg, ns);
 }
 if opt.strength_reduce {

 strength_reduce::strength_reduce(cfg, ns);
 }

 Figure 5.4: codegen/cfg.rs#L1539–L1561

 Exploit Scenario
 Alice tries to compile her code using the Solang compiler. The compiler crashes without
 producing any useful diagnostics.

 Trail of Bits 18 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/expression_values.rs#L13-L84
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/cfg.rs#L1539-L1561

 Recommendations
 Short term, eliminate the assertion failure that can occur in the code in figure 5.1. Doing so
 will eliminate a panic that could occur in the codegen module.

 Long term, incorporate fuzzing into the CI process. Doing so could help to reveal similar
 bugs.

 Trail of Bits 19 Solang Security Assessment
 CONFIDENTIAL

 6. Solang fails to compile struct containing dynamic-sized arrays of its own
 type

 Severity: Low Difficulty: Low

 Type: Data Validation Finding ID: TOB-SOLCG-6

 Target: sema module

 Description
 Solang considers structs containing multidimensional dynamic-sized arrays of its own type
 with fixed size innermost arrays to have infinite size, as a result, fails to compile them.

 The structs containing a member of its own type or a fixed-size array of its own type are
 considered to have infinite size and the compilation of them is not possible. The structs
 containing dynamic-size arrays of its own type, irrespective of dimensions, should be
 considered to have finite size and compilation should be possible.

 Figure 6.1 contains an example struct definition which contains a dynamic-sized array of its
 own type with a dynamic-size innermost array.

 struct A {
 A [] [1][2] b;

 }

 Figure 6.1: Example struct containing dynamic-sized array of its type with a dynamic-sized
 innermost array.

 Solang correctly considers the struct to have finite size and successfully compiles them.

 Figure 6.2 contains an example of struct definition which contains a dynamic-sized array of
 its own type but with a fixed-size innermost array. Solang fails to compile them with the
 error “struct 'A' has infinite size” .

 struct A {
 A[2][1][] b;

 }

 Figure 6.2: Example struct containing dynamic-sized array of its type with fixed-sized innermost
 array.

 Trail of Bits 20 Solang Security Assessment
 CONFIDENTIAL

 Exploit Scenario
 A contract contains a struct definition containing a dynamic-size array of its own type with a
 fixed-size innermost array similar to definition in figure 6.2. The compiler fails with the
 error “struct has infinite size”.

 Recommendations
 Short term, correct the handling of recursive structures, including allowing the code in
 figure 6.1. As the code is valid Solidity, it should be accepted.

 Long term, improve tests for compilation of recursive structs. Doing so will help to identify
 problems like the one described here.

 Trail of Bits 21 Solang Security Assessment
 CONFIDENTIAL

 7. Monolithic test

 Severity: Informational Difficulty: High

 Type: Testing Finding ID: TOB-SOLCG-7

 Target: codegen/strength_reduce/tests.rs

 Description
 The expresson_known_bits test is approximately 1200 lines (figure 7.1). Large tests can
 prevent errors from being caught and can hamper future development.

 #[test]
 fn expresson_known_bits () {

 use crate ::Target;
 use solang_parser::pt::Loc;
 ...
 ... // just under 1200 lines
 ...
 assert! (v.known_bits[0]);
 assert! (v.value[0]);

 }

 Figure 7.1: codegen/strength_reduce/tests.rs#L29–L1230

 There are good reasons to break a large test up into multiple, smaller tests.

 First, if a large test fails, it could be difficult for a developer to determine the cause. More
 specifically, if the test fails on the n th statement, it could be difficult for the developer to
 determine which of the n-1 preceding statements contributed to the failure.

 Second, an oft overlooked benefit of tests is that they serve as documentation. However, a
 monolithic test detracts from this benefit. Suppose a developer wants to know how to use
 statement X, which happens to be on line n of the test. If n is large, it could be difficult for
 the developer to determine which of the preceding n-1 statements were necessary to use
 X.

 Exploit Scenario
 Alice, a Solang developer, makes a change to the code that causes the
 expresson_known_bits test to fail. The amount of time that Alice spends trying to
 determine the cause of the failure is more than it would have been had a smaller test
 failed.

 Trail of Bits 22 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/tests.rs#L29-L1230

 Recommendations
 Short term, break the expresson_known_bits test up into smaller tests. This will make
 determining the cause of failures easier and will help streamline future development.

 Long term, consider enabling Clippy’s too-many-lines lint and setting its lint level to
 deny . Doing so will help limit the size of future tests.

 Trail of Bits 23 Solang Security Assessment
 CONFIDENTIAL

https://rust-lang.github.io/rust-clippy/master/index.html#/too_many_lines

 8. Optimizations hide errors contracts

 Severity: Informational Difficulty: Low

 Type: Undefined Behavior Finding ID: TOB-SOLCG-8

 Target: codegen module

 Description
 The compiler does not raise an error for contracts containing undefined variables when
 optimizations are enabled. As a result, the developer might not be aware of incorrectness
 in their contracts.

 The compiler runs the remove unused variables optimization before undefined variable
 detection. If the undefined variables are not used then the remove unused variables
 optimization will remove them and the undefined variable detection cannot find the error.
 However, when the optimizations are disabled, the undefined variable will not be removed
 and the compiler will raise the undefined variable error.

 contract Test {
 struct A {

 uint256 b ;
 }

 function test () public {
 A storage share ;
 share.b = uint (10);

 }
 }

 Figure 8.1: Example contract containing undefined variable.

 The share variable is undefined in the above contract. The compiler would raise the
 undefined variable error when the contract is compiled without optimizations. However,
 with the optimizations, the contract is compiled without any warnings or errors.

 Recommendations
 Short term, update the implementation to run undefined variables detection before
 performing any optimizations.

 Long term, write tests to verify the equivalence of the code compiled with and without
 optimizations.

 Trail of Bits 24 Solang Security Assessment
 CONFIDENTIAL

 9. Solang compiled contracts can have multiple storage accounts

 Severity: High Difficulty: Medium

 Type: Data Validation Finding ID: TOB-SOLCG-9

 Target: codegen/solana_deploy.rs

 Description
 The compiler generated constructor code does not ensure the uniqueness of the contract’s
 data account which might lead to account confusion issues where a data account different
 from the intended data account can be used.

 The contract storage is represented using a data account. All the state variables are stored
 in that account. The constructor initializes the data account by writing the magic value in
 the first eight bytes of the account data. This magic value is used by the contract functions
 to verify that the correct data account is passed, ensuring that the correct account is used
 for storage.

 The constructor does not prevent a user from creating multiple data accounts. Any user
 can call the constructor with a new account and the constructor will write the same magic
 value to the account. The new account can be used as the storage for the contract. This
 allows for use cases where a single deployment of the contract can be used for multiple
 instances of it, each with its own storage. All instances will have the same program id but
 different data accounts.

 The disadvantage of this is that the users and protocols interacting with the contract have
 to ensure that the intended data account is being used by the contract, i.e., they are
 interacting with the intended instance of the contract.

 This approach becomes an issue when a part of the contract’s state is independent of the
 storage. For example, if the contract uses a PDA to interact with external contracts then
 that PDA can be considered to be part of the contract’s state. The PDA address depends on
 the program id and a list of seeds. If the seeds are static and are fixed at the compile time,
 the derived PDA address will be independent of the contract’s storage.

 When the PDA address is independent of the contract storage and only depends on the
 code, all instances of the contract with different storage accounts will use the same PDA
 account. This creates an overlap between states of different instances of the contract. An
 attacker can exploit this by creating a new data account with storage favorable to them and
 using the PDA of existing instances to perform operations and profit from them.

 Trail of Bits 25 Solang Security Assessment
 CONFIDENTIAL

 Exploit Scenario
 Consider the contract with the following description:

 ● The constructor sets the owner state variable to the caller given account.

 ● The contract owns tokens using the PDA derived from seeds [“token owner”] .

 ● The contract contains the withdraw function which when called by the owner , with
 the owner is a signer, transfers tokens owned by the PDA to the owner account.

 Bob, the developer, deploys the contract and calls the contract with data account A . The
 owner value in account A is owned by Bob. After some time, with the normal usage of the
 contract, the PDA derived from [“token owner”] seed owns 1 million worth of tokens.

 Eve, an attacker, calls the constructor with data account B . The owner value in account B is
 owned by Eve. Eve calls the withdraw function using the data account B and Bob’s PDA.
 Because the PDA does not depend on the storage, it will be the same for Eve’s instance as
 well. The withdraw function succeeds and Eve steals the tokens owned by Bob.

 Recommendations
 Short term, consider updating the compiler to ensure uniqueness of the data account for a
 given program id and the contract. This can be achieved by ensuring that the data account
 is a PDA derived using static seeds. If the feature is needed, add warnings to the developer
 documentation explaining the risks with the current approach. Also add the documentation
 for external protocols and users interacting with the Solang contract to verify the data
 account’s address.

 Long term, document the design choices along with the assumptions made and perform a
 review to ensure that the selected design choices does not break the system invariants.

 Trail of Bits 26 Solang Security Assessment
 CONFIDENTIAL

 10. An attacker can reinitialize a Solang contract

 Severity: High Difficulty: Low

 Type: Data Validation Finding ID: TOB-SOLCG-10

 Target: codegen/solana_deploy.rs

 Description
 The compiler generated constructor code does not check that a data account is already
 initialized. As a result, an attacker can call the constructor using the initialized data account
 and update important state variables.

 The contract storage is represented using a data account. All the state variables are stored
 in that account. The constructor initializes the data account by writing the magic value in
 the first eight bytes of the account data.

 Before running the initialization routines, the constructor does not check the account’s
 magic value and proceeds with initialization. As a result, the state variables initialized in the
 constructor will be updated with the initial values and the caller provided arguments.

 Exploit Scenario
 contract Test {

 address owner ;

 constructor (address admin) {
 owner = admin;

 }
 [...]

 function withdraw () public {
 // verify owner is signer and transfer all assets.

 }
 }

 Figure 10.1: Example contract vulnerable to this issue.

 Bob, the developer, deploys the Test contract. He calls the constructor and sets the owner
 to his address. After some time, with continuous usage of the contract, the contract owns
 assets worth of 10 million USD.

 Eve, an attacker, calls the constructor with her address as admin . The constructor updates
 the owner variable. Eve calls the withdraw function and steals 10 million USD worth of
 assets.

 Trail of Bits 27 Solang Security Assessment
 CONFIDENTIAL

 Recommendations
 Short term, update the solana_deploy function to add initialization checks in the
 constructor code.

 Long term, write a reference implementation in a high level language for every instance of
 compiler generated code written using low level codegen instructions. Review the high
 level reference implementation and ensure that the low level implementation is equivalent
 to the reference implementation.

 Trail of Bits 28 Solang Security Assessment
 CONFIDENTIAL

 11. Compiler does not verify the developer specified size for the data account

 Severity: Medium Difficulty: Medium

 Type: Data Validation Finding ID: TOB-SOLCG-11

 Target: codegen/solana_deploy.rs

 Description
 The constructor does not ensure the minimum size requirement for the data account while
 creating the account using the developer provided value. As a result, the data account
 could become unusable during the usage of the contract.

 The constructor creates the data account if it is not given by the caller. The data account is
 required to have a certain minimum size. The developer can specify the data account size
 using the space annotation. The space value could be static, known during the compilation,
 or it could be dynamic, given as an argument. The compiler neither performs compile time
 checks nor adds run time checks for the space value. If the developer incorrectly calculates
 the required size or mistakenly provides the wrong value, the created data account could
 have smaller space than required.

 The minimum size is referred to as the contract.fixed_layout_size . It represents the
 size required to store the contract’s fixed size storage variables. If the data account has size
 less than fixed_layout_size , then only the first few variables can be read or written. All
 operations which require reading or writing the fixed size variable stored at the end will fail
 with out of bounds error.

 Because only some of the operations might fail, the issue may not be caught during the
 early usage of the contract and the contract could become unusable in an intermediate
 state.

 Exploit Scenario
 contract Test {

 address owner ;
 [...]
 bool withdrawn ;

 @payer(...)
 @space(2000)
 constructor (address admin) {

 owner = admin;
 }

 Trail of Bits 29 Solang Security Assessment
 CONFIDENTIAL

 function deposit () public { [...] }
 function withdraw () public {

 // verify owner is signer and transfer all assets.
 // The function writes to the `withdrawn` variable.

 }
 }

 Figure 11.1: Example contract vulnerable to the issue.

 The fixed_layout_size for the above contract is 2048 bytes. Bob, the developer,
 mistakenly specifies 2000 bytes in the space annotation. The compiler compiles the code
 without any errors. Bob deploys the contract and calls the constructor. The constructor
 creates the data account with the size of 2000 bytes and initializes the account.

 The deposit operations and other operations succeed without any errors. After some time,
 the contract accumulates assets. Bob tries to withdraw the assets using the withdraw
 function. The withdraw function writes to the withdrawn variable. The withdrawn
 variable is stored after the offset 2000 in the data account. The operation fails with out of
 bounds error. The funds are stuck in the contract.

 Recommendations
 Short term, update the solana_deploy function to check the space value during
 compilation if it is static and to add runtime checks to the constructor code if the space
 value is a runtime constant.

 Long term, Implement the compiler to be strict and perform as many checks as possible.
 Develop the compiler with the assumption that the developer will make mistakes and write
 incorrect code.

 Trail of Bits 30 Solang Security Assessment
 CONFIDENTIAL

 12. The bump is not guaranteed to be at the end of seeds array

 Severity: Low Difficulty: Medium

 Type: Undefined Behavior Finding ID: TOB-SOLCG-12

 Target: codegen/solana_deploy.rs

 Description
 The compiler, while constructing the seeds array using the constructor annotations, does
 not ensure that the bump value is placed at the end of the array. As a result, the computed
 account might not be a valid PDA and the contract initialization might fail.

 The developer can specify the seeds and bump value for a PDA using the constructor
 annotations. The compiler uses the seeds in the specified order for signing the PDA
 account. It considers the bump value as just another seed value and includes it in the
 specified position.

 for note in &func.annotations {
 match note {

 ConstructorAnnotation::Seed(seed) => {
 seeds.push(expression(seed, cfg, contract_no, None , ns, vartab, opt));

 }
 ConstructorAnnotation::Bump(bump) => {

 let expr = ast::Expression::Cast {
 loc: Loc ::Codegen,
 to: Type ::Slice(Type::Bytes(1).into()),
 expr: ast ::Expression::BytesCast {

 loc: Loc ::Codegen,
 to: Type ::DynamicBytes,
 from: Type ::Bytes(1),
 expr: bump .clone().into(),

 }
 .into(),

 };

 seeds.push(expression(&expr, cfg, contract_no, None , ns, vartab, opt));
 }
 _ => (),

 }
 }

 Figure 12.1: codegen/solana_deploy.rs#L463–L484

 However, the bump value is expected to be the last seed and should be placed at the end
 of the array. The developer might work with the assumption that the compiler will place the

 Trail of Bits 31 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/solana_deploy.rs#L463-L484

 bump value at the end irrespective of the position of its annotation. If the developer places
 a seed annotation after the bump annotation, the order of seeds used by the compiler will
 be different from the order expected by the developer.

 Because the order of the seeds decides the derived PDA account, the derived address will
 be different than the expected and it might not be a valid account. The derived PDA
 account is needed for contract initialization. As a result, the contract might need to be
 redeployed after updating the position of bump annotation.

 Exploit Scenario
 contract Test {

 @payer(...)
 @space(64)
 @seed("A")
 @bump("x")
 @seed("B")
 constructor () { [...] }
 [...]

 }

 Figure 12.2: Example contract vulnerable to the issue.

 Bob, the developer, expects the seeds array for the PDA to be [“A”, “B”, “x”] . The
 seeds used by the compiler for the PDA will be [“A”, “x”, “B”] . Bob provides the
 account derived from his seeds. The compiler tries to sign the instruction with the
 computed seeds resulting in a different PDA. The create account instruction is not signed
 by the account and the instruction fails.

 The PDA derived using the compiler’s order of the seed might not be valid PDA and the
 data account cannot be created using it. The contract needs to be redeployed with
 corrected annotations.

 Recommendations
 Short term, raise an error if the developer places the bump annotation before a seed
 annotation. Otherwise, consider placing the bump value at the end irrespective of the
 annotation’s position.

 Long term, Implement the compiler considering the expectations of the developer.
 Document the instances where the compiler diverges from these expectations.

 Trail of Bits 32 Solang Security Assessment
 CONFIDENTIAL

 13. Appending state variables to Solang contracts a�ects their storage layout

 Severity: High Difficulty: High

 Type: Undefined Behavior Finding ID: TOB-SOLCG-13

 Target: https://solang.readthedocs.io

 Description
 Adding new state variables to the Solang contract will change the storage layout. This is
 different from Ethereum Solidity contracts. Developers not aware of the difference might
 brick their contract by updating it with a contract containing additional state variables.

 The Solang contract uses Solana account data, a linear bytearray, for storage. The
 bytearray is divided into two sections using the offset contract.fixed_layout_size .
 The space from offset 0 to fixed_layout_size is used for storing fixed size storage
 variables. The space from the fixed_layout_size index is considered to be a heap and is
 used for storing dynamic size variables.

 The fixed_layout_size depends on the contract’s fixed size state variables. The state
 variables are stored in the defined order. Appending new fixed size variables would
 increase the fixed_layout_size . The new variables will be stored from the old
 fixed_layout_size offset.

 As a result, if the contract is updated with a contract containing new fixed size state
 variables, the new variables will be stored in the heap space of the old contract. This
 corrupts the heap and results in a invalid state for the contract.

 Exploit Scenario
 Bob, the developer of a contract, adds new fixed size state variables to the contract and
 updates the old contract using the new contract. Bob executes a function which writes to
 the first variable of the new state variables. The first variable is stored at the start of the
 heap of the old contract. The function overwrites the heap and corrupts the contract’s
 state. The contract becomes unusable.

 Recommendations
 Short term, add developer documentation to inform the issues with updating to a contract
 with new state variables.

 Long term, list the differences between Ethereum Solidity contracts and Solang contracts.
 Review the effects of these differences and document the issues stemming from the
 differences.

 Trail of Bits 33 Solang Security Assessment
 CONFIDENTIAL

https://solang.readthedocs.io/

 Trail of Bits 34 Solang Security Assessment
 CONFIDENTIAL

 A. Vulnerability Categories

 The following tables describe the vulnerability categories, severity levels, and difficulty
 levels used in this document.

 Vulnerability Categories

 Category Description

 Access Controls Insufficient authorization or assessment of rights

 Auditing and Logging Insufficient auditing of actions or logging of problems

 Authentication Improper identification of users

 Configuration Misconfigured servers, devices, or software components

 Cryptography A breach of system confidentiality or integrity

 Data Exposure Exposure of sensitive information

 Data Validation Improper reliance on the structure or values of data

 Denial of Service A system failure with an availability impact

 Error Reporting Insecure or insufficient reporting of error conditions

 Patching Use of an outdated software package or library

 Session Management Improper identification of authenticated users

 Testing Insufficient test methodology or test coverage

 Timing Race conditions or other order-of-operations flaws

 Undefined Behavior Undefined behavior triggered within the system

 Trail of Bits 35 Solang Security Assessment
 CONFIDENTIAL

 Severity Levels

 Severity Description

 Informational The issue does not pose an immediate risk but is relevant to security best
 practices.

 Undetermined The extent of the risk was not determined during this engagement.

 Low The risk is small or is not one the client has indicated is important.

 Medium User information is at risk; exploitation could pose reputational, legal, or
 moderate financial risks.

 High The flaw could affect numerous users and have serious reputational, legal,
 or financial implications.

 Difficulty Levels

 Difficulty Description

 Undetermined The difficulty of exploitation was not determined during this engagement.

 Low The flaw is well known; public tools for its exploitation exist or can be
 scripted.

 Medium An attacker must write an exploit or will need in-depth knowledge of the
 system.

 High An attacker must have privileged access to the system, may need to know
 complex technical details, or must discover other weaknesses to exploit this
 issue.

 Trail of Bits 36 Solang Security Assessment
 CONFIDENTIAL

 B. Non-Security-Related Findings

 The following recommendations are not associated with specific vulnerabilities. However,
 they enhance code readability and may prevent the introduction of vulnerabilities in the
 future.

 ● Reorganize the repository so that the root manifest is virtual, i.e., a workspace
 only. Currently, the root manifest describes both a package and a workspace (figure
 B.1). The current organization complicates commands such as cargo test , as
 --workspace must be passed for the command to apply to the whole workspace,
 and not just the root package.

 [package]
 name = "solang"
 ...
 [workspace]
 members = ["solang-parser" , "tests/wasm_host_attr"]

 Figure B.1: Cargo.toml#L1–L103

 ● Have the build script check that the correct version of llvm-config is referred
 to by PATH . The expected version of llvm-config has the SBF target. The build
 script could run llvm-config --targets-built and verify that SBF appears in
 the output (see figure B.2). Currently, if the wrong llvm-config is referred to by
 PATH , the build script will complete without error.

 $ llvm-config --targets-built
 AArch64 AMDGPU ARM AVR BPF Hexagon Lanai Mips MSP430 NVPTX PowerPC RISCV SBF
 Sparc SystemZ VE WebAssembly X86 XCore

 Figure B.2: Output produced by the expected (patched) version of llvm-config

 ● Adopt a consistent import format. (See figure B.3.) Doing so will make it easier to
 determine what symbols are imported and from where. Rustfmt’s (unstable)
 imports_granularity and group_imports configurations could help with this.

 use self ::{
 cfg::{optimize_and_check_cfg, ControlFlowGraph, Instr} ,
 dispatch::function_dispatch,
 expression::expression,
 solana_accounts::account_collection::collect_accounts_from_contract,
 vartable::Vartable,

 };
 ...
 use crate ::codegen::cfg::ASTFunction ;

 Figure B.3: codegen/mod.rs#L27–L43

 Trail of Bits 37 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/Cargo.toml#L1-L103
https://github.com/rust-lang/rustfmt/blob/master/Configurations.md#imports_granularity
https://github.com/rust-lang/rustfmt/blob/master/Configurations.md#group_imports
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/mod.rs#L27-L43

 ● Run Clippy’s pedantic lints in CI. As previously reported (TOB-SOLANG-3 in the
 “Solang Parser and Semantic Analysis” report), Clippy’s pedantic lints produce many
 warnings when applied to the codebase. Addressing them would improve the
 quality of the code. Example warnings appear in figures B.4 through B.7.

 warning: redundant closure
 --> src/codegen/cfg.rs:1802 :14
 |

 1802 | .map(|stmt| stmt.reachable())
 | ^^^^^^^^^^^^^^^^^^^^^^^ help: replace the closure with the

 method itself: `sema::ast::Statement::reachable`
 |
 = help: for further information visit

 https://rust-lang.github.io/rust-clippy/master/index.html#redundant_closure_fo
 r_method_calls

 Figure B.4: Warning produced by redundant_closure_for_method_calls

 warning: implicitly cloning a `Vec` by calling `to_vec` on its dereferenced
 type

 --> src/codegen/expression.rs:2519 :16
 |

 2519 | value: id.to_vec(),
 | ^^^^^^^^^^^ help: consider using: `id.clone()`
 |
 = help: for further information visit

 https://rust-lang.github.io/rust-clippy/master/index.html#implicit_clone

 Figure B.5: Warning produced by implicit_clone

 warning: used `cloned` where `copied` could be used instead
 --> src/codegen/solana_accounts/account_management.rs:21 :14
 |

 21 | .cloned()
 | ^^^^^^ help: try: `copied`
 |
 = help: for further information visit

 https://rust-lang.github.io/rust-clippy/master/index.html#cloned_instead_of_co
 pied

 Figure B.6: Warning produced by cloned_instead_of_copied

 warning: it is more concise to loop over containers instead of using explicit
 iteration methods
 --> src/codegen/strength_reduce/mod.rs:91 :29
 |

 91 | for (block_no, vars) in block_vars.into_iter() {
 | ^^^^^^^^^^^^^^^^^^^^^^ help: to write this

 more concisely, try: `block_vars`
 |
 = help: for further information visit

 Trail of Bits 38 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/cfg.rs#L1802
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_closure_for_method_calls
https://rust-lang.github.io/rust-clippy/master/index.html#redundant_closure_for_method_calls
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/expression.rs#L2519
https://rust-lang.github.io/rust-clippy/master/index.html#implicit_clone
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/solana_accounts/account_management.rs#L21
https://rust-lang.github.io/rust-clippy/master/index.html#cloned_instead_of_copied
https://rust-lang.github.io/rust-clippy/master/index.html#cloned_instead_of_copied
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/mod.rs#L91

 https://rust-lang.github.io/rust-clippy/master/index.html#explicit_into_iter_l
 oop

 Figure B.7: Warning produced by explicit_into_iter_loop

 ● Eliminate the unnecessary use of mut in figure B.8.

 warning: variable does not need to be mutable
 --> src/codegen/subexpression_elimination/mod.rs:165 :13
 |

 165 | let mut cur_block = &mut cfg.blocks[*block_no];
 | ----^^^^^^^^^
 | |
 | help: remove this `mut`
 |
 = note: `#[warn(unused_mut)]` on by default

 Figure B.8: Warning produced by unused_mut

 ● Change the use of borrow_mut to borrow in figure B.9. Using borrow_mut
 unnecessarily could result in a panic. (Note: unnecessary_borrow_mut is a Dylint
 lint.)

 warning: borrowed reference is used only immutably
 -->

 src/codegen/subexpression_elimination/available_expression_set.rs:368 :43
 |

 368 | for (child_id, node) in &var_node.borrow_mut().children {
 | ^^^^^^^^^^^^ help: use:

 ̀borrow()`
 |
 = note: `#[warn(unnecessary_borrow_mut)]` on by default

 Figure B.9: Warning produced by unnecessary_borrow_mut

 ● Eliminate the unnecessary call to as_bytes in figure B.10. (Note:
 unnecessary_conversion_for_trait is a Dylint lint.)

 warning: the receiver implements the required traits
 --> src/codegen/events/solana.rs:34 :23
 |

 34 | hasher.update(discriminator_image.as_bytes());
 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ help: use:

 ̀&discriminator_image`

 Figure B.10: Warning produced by unnecessary_conversion_for_trait

 ● Eliminate the duplicate dependencies that appear in the root manifest.
 Packages sha2 and tempfile appear as both regular and “dev” dependencies. It is
 sufficient that they appear as just regular dependencies.

 Trail of Bits 39 Solang Security Assessment
 CONFIDENTIAL

https://rust-lang.github.io/rust-clippy/master/index.html#explicit_into_iter_loop
https://rust-lang.github.io/rust-clippy/master/index.html#explicit_into_iter_loop
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/mod.rs#L165
https://github.com/trailofbits/dylint/tree/master/examples/supplementary/unnecessary_borrow_mut
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/available_expression_set.rs#L368
https://github.com/trailofbits/dylint/tree/master/examples/supplementary/unnecessary_conversion_for_trait
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/events/solana.rs#L34

 [dependencies]
 ...
 tempfile = "3.4"
 ...
 sha2 = "0.10"
 ...
 [dev-dependencies]
 ...
 sha2 = "0.10"
 ...
 tempfile = "3.3"

 Figure B.11: Cargo.toml#L18–L85

 ● Eliminate the corner case that can cause test_mul_within_range_signed to
 fail. If first_operand_rand is -2^(N-1) and second_op is -1 , the multiplication
 will overflow.

 #[test]
 fn test_mul_within_range_signed () {

 let mut rng = rand::thread_rng();
 for width in (8 ..= 256).step_by(8) {

 ...
 // The range of values that can be held in signed N bits is [-2^(N-1),

 2^(N-1)-1]. Here we generate a random number within this range and multiply it
 by -1, 1 or 0.

 let first_operand_rand = rng.gen_bigint(width - 1).sub(1_ u32);
 println! ("First op : {first_operand_rand:?}");

 let side = vec! [- 1 , 0 , 1];
 // -1, 1 or 0
 let second_op = BigInt::from(*side.choose(& mut rng).unwrap());
 println! ("second op : {second_op:?}");

 Figure B.12: tests/solana_tests/primitives.rs#L989–L1011

 ● Replace the call to BigUint::pow followed by truncate_biguint (figure B.13)
 with just one call to BigUint::modpow (figure B.14). Doing so will make the uint
 test more efficient.

 let mut res = a.clone().pow(n);
 truncate_biguint(& mut res, width);

 Figure B.13: tests/solana_tests/primitives.rs#L543–L544

 let res = a
 .clone()
 .modpow(&BigUint::from(n), &BigUint::from(2u64).pow(width as u32));

 // truncate_biguint(&mut res, width);

 Figure B.14: Proposed change to the code in figure B.13

 Trail of Bits 40 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/Cargo.toml#L18-L85
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana_tests/primitives.rs#L989-L1011
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana_tests/primitives.rs#L543-L544

 ● Check both sides of the boundary condition in the code in figure B.15, i.e., add
 code like in figure B.16 to transfer_fails_not_enough . Doing so will help
 increase confidence in the transfer_fails_not_enough test.

 let res = vm.function_must_fail(
 "transfer" ,
 &[

 BorshToken::FixedBytes(new.to_vec()),
 BorshToken::Uint {

 width: 64 ,
 value: BigInt ::from(104 u8),

 },
],

);
 assert! (res.is_err());

 Figure B.15: tests/solana_tests/balance.rs#L256–L266

 let res = vm.function_must_fail(
 "transfer",
 &[

 BorshToken::FixedBytes(new.to_vec()),
 BorshToken::Uint {

 width: 64,
 value: BigInt::from(103u8),

 },
],

);
 assert!(res.is_ok());

 Figure B.16: Proposed change to the code in figure B.13

 A similar recommendation applies to the transfer_fails_overflow test (see
 figure B.17).

 let res = vm.function_must_fail(
 "transfer" ,
 &[

 BorshToken::FixedBytes(new.to_vec()),
 BorshToken::Uint {

 width: 64 ,
 value: BigInt ::from(104 u8),

 },
],

);
 assert! (res.is_err());

 Figure B.17: tests/solana_tests/balance.rs#L297–L307

 ● Rename the following methods to better communicate what they do:

 Trail of Bits 41 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana_tests/balance.rs#L256-L266
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana_tests/balance.rs#L297-L307

 ○ function_must_fail → function_may_fail

 ○ edges → successors

 ○ clone_for_parent_block → deep_clone

 ● Correct the grammar in the comments in figures B.18 and B.19.

 /// When a reaching definition change , we remove the variable node and all its
 descendants from
 /// the graph

 Figure B.18:
 codegen/subexpression_elimination/available_expression_set.rs#L358–L359

 (“change” should likely be “changes”)

 /// Regenerate instructions after that we exchanged common subexpressions for
 temporaries

 Figure B.19: codegen/subexpression_elimination/instruction.rs#L203
 (“exchanged” should likely be “exchange”)

 ● Swap the comments in figure B.20, which appear to be associated with the
 wrong functions.

 /// Get the maximum unsigned value in a set
 pub (super) fn set_max_signed (set: & HashSet <Value>) -> Option <BigInt> {
 ...
 /// Get the maximum signed value in a set
 pub (super) fn set_max_unsigned (set: & HashSet <Value>) -> BigInt {

 Figure B.20: codegen/strength_reduce/value.rs#L69–L95

 ● Correct the typo in expresson_known_bits (figure B.21).

 fn expresson_known_bits () {

 Figure B.21: codegen/strength_reduce/tests.rs#L30
 (expresson should be expression)

 ● Rewrite the code in figure B.22 to use unwrap or expect . Doing so will make the
 code more clear.

 if let Some (block_vars) = block_vars.get_mut(&edge) {
 ...

 } else {
 unreachable! ();

 }

 Trail of Bits 42 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/tests/solana.rs#L1581
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/cfg.rs#L422
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/available_expression_set.rs#L17
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/available_expression_set.rs#L358-L359
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/instruction.rs#L203
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/value.rs#L69-L95
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/tests.rs#L30

 Figure B.22: codegen/dead_storage.rs#L149–L171

 ● Use named constants in place of magic numbers throughout the code. Doing
 so will make the code more clear. Examples where magic numbers are used appear
 in figures B.23 though B.25.

 let lamports_runtime_constant = (128 + space_runtime_constant) * 3480 * 2 ;

 Figure B.23: codegen/solana_deploy.rs#L342

 flow[block_1] = BigRational::from_integer(1000 . into());

 Figure B.24:
 codegen/subexpression_elimination/anticipated_expressions.rs#L118

 && BigRational::from_integer(2000 . into()) == *flow_magnitude

 Figure B.25:
 codegen/subexpression_elimination/anticipated_expressions.rs#L161

 In some cases, even replacing 0 with a named constant would make the code more
 clear. For example, in figure B.26, 0 might be replaced with ENTRY_BLOCK .

 vars[0].clone()

 Figure B.26: codegen/dead_storage.rs#L114

 ● Add a comment explaining why it is acceptable that the highest_set_bit
 function (figure B.27) returns 0 for both 0 and 1. While this behavior doesn’t
 appear to cause a problem now, the function could easily be misused in future code.

 fn highest_set_bit (bs: & [u8]) -> usize {
 for (i, b) in bs.iter().enumerate().rev() {

 if *b != 0 {
 return (i + 1) * 8 - bs[i].leading_zeros() as usize - 1 ;

 }
 }

 0
 }

 Figure B.27: codegen/strength_reduce/mod.rs#L569–L577

 Trail of Bits 43 Solang Security Assessment
 CONFIDENTIAL

https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/dead_storage.rs#L149-L171
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/solana_deploy.rs#L342
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/anticipated_expressions.rs#L118
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/subexpression_elimination/anticipated_expressions.rs#L161
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/dead_storage.rs#L114
https://github.com/hyperledger/solang/blob/a84b0ad3b67a17b524ef6b7437fd4c5376833807/src/codegen/strength_reduce/mod.rs#L569-L577

