// HALBORN

Solana Labs -
Runtime and BPF
Loader Diff
124aaa95 ->
6fbe8ba

L1 Security Assessment

Prepared by: Halborn
Date of Engagement: August 21st, 2023 - August 24th, 2023
Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 4
1 EXECUTIVE OVERVIEW 5
1.7 INTRODUCTION 6
1.2 AUDIT SUMMARY 6
1.3 TEST APPROACH & METHODOLOGY 7
2 RISK METHODOLOGY 8
2.1 EXPLOITABILITY 9
2.2 IMPACT 10
2.3 SEVERITY COEFFICIENT 12
2.4 SCOPE 14
3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 15
4 FINDINGS & TECH DETAILS 16

4.1 (HAL-01) UNPATCHED VERSION OF ED25519-DALEK DEPENDENCY - INFOR-

MATIONAL (0.9) 18
Description 18
Code Location 18
Recommendation 19
Remediation Plan 20

4.2 (HAL-02) MISSING CARGO OVERFLOW CHECKS - INFORMATIONAL(0.0) 20

Description 20
Code Location 20
BVSS 20
Recommendation 20

Remediation Plan 21

MANUAL TESTING

COMPUTE BUDGET

Description

Results

TRANSACTION PRIORITY DETAILS
Description

Results

COST MODEL

Description

Results

STAKES

Description

Results

AUTOMATED TESTING
AUTOMATED ANALYSIS
Description

Results

UNSAFE RUST CODE DETECTION

Description

Results

22

23

23

23

25

25

25

26

26

26

28

28

28

29

30

30

30

31

31

31

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE
0.1 Document Creation 08/21/2023
0.2 Document Updates 08/22/2023
0.3 Final Draft 08/23/2023
0.4 Draft Review 08/24/2023
0.5 Draft Review 08/24/2023
1.0 Remediation Plan 09/25/2023
1.1 Remediation Plan Review 09/25/2023

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Piotr Cielas Halborn Piotr.Cielas@halborn.com
Isabel Burruezo Halborn Isabel.Burruezo@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Isabel.Burruezo@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

Solana is an open-source project implementing a new, high-performance,
permissionless blockchain. Changes in scope affected several modules,
the most important ones are briefly described. Sealevel, Solana’s par-
allel smart contracts runtime, is a concurrent transaction processor.
Transactions specify their data dependencies upfront, and dynamic memory
allocation is explicit. By separating program code from the state it
operates on, the runtime can choreograph concurrent access. Gulf Stream
the transaction forwarding protocol, which is Solana’s mempool-less so-
lution for forwarding and storing transactions before processing them.
The Gossip Service acts as a gateway to nodes in the control plane. Val-
idators use the service to ensure information is available to all other
nodes in a cluster. TPU (Transaction Processing Unit) is the logic of
the validator responsible for block production.

Halborn conducted a security audit on a set of changes to the Solana
repository made between two different commits, beginning on August 21st,
2023 and ending on August 24th, 2023 . The security assessment was scoped
to the updates to the master branch of the solana GitHub repository.
Commit hashes and further details can be found in the Scope section of
this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided four weeks for the engagement and as-
signed a full-time security engineer to audit the security of the smart
contract. The security engineer is a blockchain and smart-contract se-
curity expert with advanced penetration testing, smart-contract hacking,
and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

®* Ensure that smart contract functions operate as intended
®* Identify potential security issues with the smart contracts

https://github.com/solana-labs/solana

EXECUTIVE OVERVIEW

In summary, Halborn did not identify any significant issue; however,
some recommendations were given to reduce the likelihood and impact of
risks, which were acknowledged by Solana Labs .

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of a manual review of the source code
and automated security testing to balance efficiency, timeliness, prac-
ticality, and accuracy in regard to the scope of the program audit.
While manual testing is recommended to uncover flaws in business logic,
processes, and implementation; automated testing techniques help enhance
coverage of programs and can quickly identify items that do not follow
security best practices.

The following phases and associated tools were used throughout the term
of the audit:

®* Research into the architecture, purpose, and use of the platform.
®* Manual program source code review to identify business logic issues.
® Mapping out possible attack vectors

®* Thorough assessment of safety and usage of critical Rust variables
and functions in scope that could lead to arithmetic vulnerabilities.

® Finding unsafe Rust code usage (cargo-geiger)

®* Scanning dependencies for known vulnerabilities (cargo audit).

® Local runtime testing (solana-test-framework)

EXECUTIVE OVERVIEW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two
sets of Metrics and a Severity Coefficient. This system is inspired by
the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability
captures the ease and technical means by which vulnerabilities can be
exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of
the ranking with two factors: Reversibility and Scope. These capture the
impact of the vulnerability on the environment as well as the number of
users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and
10 corresponding to the highest security risk. This provides an objective
and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-
nerabilities based on their level of risk to address the most critical
issues in a timely manner.

EXECUTIVE OVERVIEW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker
relative to sending a single transaction on the relevant blockchain.
Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in
order to exploit the vulnerability. Includes but is not limited to macro
situation, available third-party liquidity and regulatory challenges.

Metrics:
Exploitability Metric . :
Metric Value Numerical Value
(mg)
L Arbitrary (AO:A) 1
Attack Origin (AO) o
Specific (AO:S) 0.2
Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33
Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability /£ is calculated using the following formula:

E = n Me

EXECUTIVE OVERVIEW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources
managed by the contract due to a successfully exploited vulnerability.
Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-
ity. Integrity refers to the trustworthiness and veracity of data stored
and/or processed on-chain. Integrity impact directly affecting Deposit
or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-
sulting from a successfully exploited vulnerability. This metric refers
to smart contract features and functionality, not state. Availability
impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either
users or owners.

10

EXECUTIVE OVERVIEW

Metrics:

Impact Metric

Metric Value

Numerical Value

(mp)

None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

None (I:N) 0
Low (I:L) 0.25
Integrity (I) Medium (I:M) 0.5
High (I:H) .75

Critical (I:C) 1

None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75

Critical 1

None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75

Critical (D:C) 1

None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium: (Y:M) 0.5
High: (Y:H) 0.75

Critical (Y:H)

Impact / is calculated using the following formula:

I = max(my) +

> my; — max(my)

4

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be
reversed. For upgradeable contracts, assume the contract private key is
available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-
sources in other contracts.

EXECUTIVE OVERVIEW

Coefficient _ :
©) Coefficient Value Numerical Value
None (R:N) 1
Reversibility (r) Partial (R:P) 0.5
Full (R:F) 0.25
Changed (S:C) 1.25

Scope (s)

Unchanged (S:U)

Severity Coefficient (' is obtained by the following product:

C=rs

12

EXECUTIVE OVERVIEW

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC = 10)

The score is rounded up to 1 decimal places.

Severity Score Value Range
Critical 9 -10
High 7 -8.9
4.5 - 6.9
2 - 4.4
0 -1.9

13

EXECUTIVE OVERVIEW

2.4 SCOPE

Code repositories:
1. Solana L1

®* Repository: solana

® start: 124aaa95f65aac9a037db85alce27724bd2012ff
® final: 6fbe8ba3b034b3fb79dd701928ea49e0e4271314

® Modules in scope:

1. program-runtime (solana/program-runtime/src)
2. runtime (solana/runtime/src)

3. bpf_loader (solana/programs/bpf_loader/src)

Out-of-scope:
- third-party libraries and dependencies
- financial-related attacks

14

https://github.com/solana-labs/solana
https://github.com/solana-labs/solana/commit/124aaa95f65aac9a037db85a1ce27724bd2012ff
https://github.com/solana-labs/solana/commit/6fbe8ba3b034b3fb79dd701928ea49e0e4271314

EXECUTIVE OVERVIEW

3. ASSESSMENT SUMMARY & FINDINGS

OVERVIEW

CRITICAL

HIGH

0

15

EXECUTIVE OVERVIEW

SECURITY ANALYSIS

(HAL-01) UNPATCHED VERSION OF
ED25519-DALEK DEPENDENCY

(HAL-02) MISSING CARGO OVERFLOW
CHECKS

RISK LEVEL

REMEDIATION DATE

ACKNOWLEDGED

ACKNOWLEDGED

16

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

4.1 (HAL-01) UNPATCHED VERSION OF
ED25519-DALEK DEPENDENCY -
INFORMATIONAL (0.0)

Description:

An issue was identified in the used version of the ed25519-dalek which
introduces a potential “Double Public Key Signing Function Oracle Attack”
vulnerability concern.

In versions of ed25519-dalek prior to v2.0, private and public keys
are treated as separate types, allowing them to be combined into a
Keypair. Additionally, these versions provided APIs for serializing and
deserializing 64-byte private/public key pairs.

The critical concern lies in the inherent insecurity of these APIs and
serializations. Specifically, while computing the ‘S’ part of a cryp-
tographic signature, these versions use the public key as one of the
inputs, but the ‘R’ value is calculated independently of it.

Code Location:

178 dlopen_derive = "0.1.4"
179 eager = "0.1.0"
180 ed25519-dalek = "=1.0.1"

78 [dev-dependencies]

79 assert_matches = { workspace = true }
80 ed25519-dalek = { workspace = true }

18

FINDINGS & TECH DETAILS

Recommendation:

It is strongly recommended to upgrade the dependency to a secure and
patched version (v2.0 or 1later) of ed25519-dalek. This will ensure
improved security and mitigate the potential vulnerabilities and risks
associated with the earlier versions.

19

FINDINGS & TECH DETAILS

Remediation Plan:

ACKNOWLDGED: The Solana Labs team acknowledged this finding.

4.2 (HAL-02) MISSING CARGO OVERFLOW
CHECKS - INFORMATIONAL (0.0)

Description:

It has been observed that the changes applied to the assessment’s scope
do not include the implementation of the overflow-checks=true flag in the
Cargo.toml files.

By default, overflow checks are disabled in optimized release builds. Con-
sequently, any overflows occurring in release builds will remain silent,
potentially causing unexpected application behavior. To ensure proper
overflow handling, it is advisable to include the overflow-checks=true
setting in the Cargo.toml file, even when using checked arithmetic through

functions like checked_* or saturating_x.

Code Location:

®* program-runtime/Cargo.toml
® programs/bpf_loader/Cargo.toml

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation:

Add overflow-checks=true under the release profile in the Cargo.toml
files specified for recommended behavior.

20

FINDINGS & TECH DETAILS

Remediation Plan:

ACKNOWLDGED: The Solana Labs team acknowledged this finding.

21

MANUAL TESTING

MANUAL TESTING

In the manual testing phase, the following scenarios were simulated.
The scenarios listed below were selected based on the severity of the
vulnerabilities Halborn was testing the program for.

5.1 COMPUTE BUDGET

Description:

In commit 5de4cd2 The inappropriate use of wusize for the vari-
able representing the count of non-compute budget instructions,
num_non_compute_budget_instructions was addressed in the compute budget
module. It was replaced with the more suitable data type: u32.

This change was reviewed, and several tests have been performed to ensure
that no security risks have been accidentally introduced beside the proper
and expected calculation’s result.

Results:
No vulnerabilities were identified.

Process multiple no compute budget instructions which would exceed the
maximum value of the limit of compute units

Testing process multiple no compute budget instructions....

[+]Process instruction

default_units_per_instruction: true

support_request_units_deprecated: false

enable_request_heap_frame_ix: true

support_set_loaded_accounts_data_size_limit_ix: true

Number of non compute budget instructions: 14

resulting compute unit limit: 1400000

result: Ok(PrioritizationFeeDetails { fee: @, priority: @ })

test compute_budget::tests::test_custom_process_multiple_no_compute_budget_instructions ... ok

test result: ok. 1 passed; @ failed; @ ignored; @ measured; 4@ filtered out; finished in @.@0@s

23

https://github.com/solana-labs/solana/commit/5de4cd28bcaa2e0a69a4d986598d1345c461b81e

MANUAL TESTING

Process multiple instructions including a ComputeBudget: :Deprectaed with
supporting request units deprecated

running 1 test

Testing process mixed instructions

[+]Process instruction
default_units_per_instruction: true
support_request_units_deprecated: true
enable_request_heap_frame_ix: true
support_set_loaded_accounts_data_size_limit_ix: true
ComputeBudgetInstruction::RequestUnitsDeprecated
updated_compute_unit_limit: None

prioritization_fee: None

updated_compute_unit_limit: Some(20€000)
prioritization_fee: Some(Deprecated(1000))

Number of non compute budget instructions: 4
resulting compute unit limit: 200000

[xINew PriotizationFeeDeatils

fee_type: Deprecated(1000)

compute_unit_limit: 200000
PrioritizationFeeType::Deprecated

resulting fee: 1000

resulting priority: 5e@e

result: Ok(PrioritizationFeeDetails { fee: 1000, priority: 5000 })
test compute_budget::tests::test_custom_process_mixed_instruction ... ok

Process multiple instructions including a ComputeBudget: :Deprectaed with-
out supporting request units deprecated

running 1 test

Testing process mixed instructions

[+]Process instruction

default_units_per_instruction: true

support_request_units_deprecated: false

enable_request_heap_frame_ix: true

support_set_loaded_accounts_data_size_limit_ix: true
ComputeBudgetInstruction::RequestUnitsDeprecated

result: Err(InstructionError(3, InvalidInstructionData))

test compute_budget::tests::test_custom_process_mixed_instruction_no_support_deprecated ... ok

MANUAL TESTING

5.2 TRANSACTION PRIORITY DETAILS

Description:

In commit 195469a support for deprecated compute budget instructions was
added when obtaining transaction priority details.

Tests were conducted to ensure that these changes do not introduce any

vulnerabilities, security risks, or compromise the correct functionality.

Results:
No vulnerabilities were identified.

Transaction priority details for multiple deprecated compute budget in-
structions

running 1 test

[+]Get transaction priority details
[+]Process compute budget instruction
Round compute unit price enabled: false
[+1Process instruction
updated_compute_unit_limit: None
ComputeBudgetInstruction: :RequestUnitsDeprecated
prioritization_fee: None
updated_compute_unit_limit: Some(400000)
prioritization_fee: Some(Deprecated(1600))
updated_compute_unit_limit: Some(400000)
TransactionPriorityDetails: None

thread 'transaction_priority_details::tests::test_custom_get_priority_with_multiple_deprecated_compute_unit_request' panicked at 'assertion failed: °(left == right)’
left: ‘None®,

right: “Some(TransactionPriorityDetails { priority: 10000, compute_unit_limit: 400000 })'', runtime/src/transaction_priority_details.rs:378:12

note: run with ‘RUST_BACKTRACE=1' environment variable to display a backtrace

test transaction_priority_details::tests::test_custom_get_priority with_multiple_deprecated_compute_unit_request ... FAILED

Transaction priority details for deprecated and set unit price compute
budget instructions

running 1 test

[+]1Get transaction priority details

[+]Process compute budget instruction

Round compute unit price enabled: false

[+]Process instruction

default_units_per_instruction: true

support_request_units_deprecated: true

enable_request_heap_frame_ix: true

support_set_loaded_accounts_data_size_limit_ix: true

updated_compute_unit_limit: None

prioritization_fee: None

updated_compute_unit_limit: Some(400000)

prioritization_fee: Some(Deprecated(1000))

ComputeBudgetInstruction: :SetComputeUnitPrice

prioritization_fee: Some(Deprecated(1000))

TransactionPriorityDetails: None

thread 'transaction_priority_details::tests::test_get_priority_with_multiple_compute_budget_inst' panicked at 'assertion failed: ‘(left == right)’
left: “None',

right: ‘Some(TransactionPriorityDetails { priority: 10000, compute_unit_limit: 400000 })'', runtime/src/transaction_priority_details.rs:431:12

note: run with ‘RUST_BACKTRACE=1" environment variable to display a backtrace

test transaction_priority_details::tests::test_get_priority_with_multiple_compute_budget_inst ... FAILED

25

https://github.com/solana-labs/solana/commit/195469a5f9ae350ffdf767e8c778fcfb894a7656

MANUAL TESTING

5.3 COST MODEL

Description:

In commit 8ed7ebe modifications were made to address the issue about cost
model being able to double count built-in instruction cost, described
in #32422.

These changes were implemented to ensure that the computation of

bpf_execution_cost adheres to the expected behavior.

Results:
No vulnerabilities were identified.

Get transaction cost with no-builtin and built-in instructions including

compute budget unit limit

Testing tx cost with mix of instruction including ComputeUnitLimit...
[+]Get tx cost

program_id: 1111111QLbz7JHiBTspS962RLKVBGNdWFwiEagKM

<No Built-in instruction>

bpf_costs: 200000

program_id: 11111111111111111111111111111111

<Built-in instruction>

builtin_costs: 150

program_id: ComputeBudget111111111111111111111111111111

<Built-in instruction>

builtin_costs: 300

program_id: 11111112D1oxKts8YPdTIRG5FzxTNpMtWmg8hkVx3

<No Built-in instruction>

bpf_costs: 400000

[+]Process instruction

default_units_per_instruction: true

support_request_units_deprecated: false
enable_request_heap_frame_ix: true
support_set_loaded_accounts_data_size_limit_ix: true
ComputeBudgetInstruction: :SetComputeUnitLimit

compute_unit_limit: 500000

Number of non compute budget instructions: 3

resulting compute unit limit: 500000

PriorizationFeeDetail: Ok(PrioritizationFeeDetails { fee: @, priority: @ })
budget.compute_unit_limit: 500000

resulting bpf_costs: 500000

builtins_execution_cost: 300

bpf_execution_cost: 500000

test cost_model::tests::test_transaction_cost_with_mix_instruction_with_compute_budget_unit_limit ... ok

26

https://github.com/solana-labs/solana/commit/8ed7ebe801c25d83c1be73b04155fa18f91d9dc8
https://github.com/solana-labs/solana/pull/32422

MANUAL TESTING

Get transaction cost with no-builtin and built-in instruction, including
compute budget unit price

Testing tx cost with mix of instruction including ComputeUnitPrice...
[+]1Get tx cost

program_id: 1111111QLbz7JHiBTspS962RLKVBGNdWFwiEaqKM

<No Built-in instruction>

bpf_costs: 200000

program_id: 11111111111111111111111111111111

<Built-in instruction>

builtin_costs: 150

program_id: ComputeBudget111111111111111111111111111111

<Built-in instruction>

builtin_costs: 300

program_id: 11111112D1oxKts8YPdTIRG5FzxTNpMtWmg8hkVx3

<No Built-in instruction>

bpf_costs: 400000

[+]Process instruction

default_units_per_instruction: true

support_request_units_deprecated: false

enable_request_heap_frame_ix: true
support_set_loaded_accounts_data_size_limit_ix: true
ComputeBudgetInstruction::SetComputeUnitPrice

prioritization_fee: None

Number of non compute budget instructions: 3

resulting compute unit limit: 6@@000

[*]INew PriotizationFeeDeatils

fee_type: ComputeUnitPrice(100000)

compute_unit_limit: 60@eee

PrioritizationFeeType: :ComputeUnitPrice

PriorizationFeeDetail: Ok(PrioritizationFeeDetails { fee: 600@@, priority: 10eeee })
budget.compute_unit_limit: 600000

resulting bpf_costs: 400000

builtins_execution_cost: 3880

bpf_execution_cost: 400000

test cost_model::tests::test_transaction_cost_with_mix_instruction_with_compute_budget_unit_price ... ok

27

MANUAL TESTING

5.4 STAKES

Description:

In commit 8fea568 changes were added to solve the issue around the storage
of warm-up and cooldown parameters per delegation within the system. In
response to this issue, the decision has been made to deprecate the
usage of stake config and the warm-up/cooldown rate in the context of
delegation. Instead, a new approach is introduced where hardcoded values
will be employed directly within the stake program.

This aims to ensure uniformity in delegation behavior across all in-

stances, reducing complexity and potential configuration errors.

Results:
No vulnerabilities were identified.

Check and store with zero stake

running 1 test

[*]Check and store

[*]Upsert vote account

[*]Calculate stake
new_rate_activation_epoch: None

epoch: ©

stake_history: StakeHistory(StakeHistory([]))
resulting stake after stake calculate: ©
[*]Check and store

[*]Remove stake delegation
stakes_delegations after update: {}

test stakes::tests::test_stakes_zero ... ok

28

https://github.com/solana-labs/solana/commit/8fea56802a84c99808b98db245e7305cc0ccfa59

AUTOMATED TESTING

AUTOMATED TESTING

6.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with the detection of
well-known security issues and vulnerabilities. Among the tools used was
cargo-audit, a security scanner for vulnerabilities reported to the Rust-
Sec Advisory Database. All vulnerabilities published in https://crates.io
are stored in a repository named The RustSec Advisory Database. cargo
audit is a human-readable version of the advisory database which performs
a scanning on Cargo.lock. Security Detections are only in scope. All
vulnerabilities shown here were already disclosed in the above report.
However, to better assist the developers maintaining this code, the au-
ditors are including the output with the dependencies tree, and this
is included in the cargo audit output to better know the dependencies
affected by unmaintained and vulnerable crates.

Results:

ID package Short Description

acle Attack on ‘ed25519-dalek®

RUSTSEC-2022-0093 | ed25519-dalek Double Public Key Signing Function Or-

RUSTSEC-2020-0071 | time Potential segfault in the time crate

RUSTSEC-2023-0001 | tokio Configuration corruption

30

https://rustsec.org/advisories/RUSTSEC-2022-0093
https://github.com/time-rs/time/issues/293
https://rustsec.org/advisories/RUSTSEC-2023-0001

AUTOMATED TESTING

6.2 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of
well-known security issues and vulnerabilities. Among the tools used was
cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.

Results:

No unsafe code blocks were identified in the packages in scope and their
dependencies.

31

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	MANUAL TESTING
	COMPUTE BUDGET
	Description
	Results

	TRANSACTION PRIORITY DETAILS
	Description
	Results

	COST MODEL
	Description
	Results

	STAKES
	Description
	Results

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results

