
Solana Labs -
Runtime and BPF

Loader Diff
124aaa95 ->

6fbe8ba
L1 Security Assessment

Prepared by: Halborn

Date of Engagement: August 21st, 2023 - August 24th, 2023

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 3

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 7

2 RISK METHODOLOGY 8

2.1 EXPLOITABILITY 9

2.2 IMPACT 10

2.3 SEVERITY COEFFICIENT 12

2.4 SCOPE 14

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 15

4 FINDINGS & TECH DETAILS 16

4.1 (HAL-01) UNPATCHED VERSION OF ED25519-DALEK DEPENDENCY - INFOR-

MATIONAL(0.0) 18

Description 18

Code Location 18

Recommendation 19

Remediation Plan 20

4.2 (HAL-02) MISSING CARGO OVERFLOW CHECKS - INFORMATIONAL(0.0) 20

Description 20

Code Location 20

BVSS 20

Recommendation 20

Remediation Plan 21

1



5 MANUAL TESTING 22

5.1 COMPUTE BUDGET 23

Description 23

Results 23

5.2 TRANSACTION PRIORITY DETAILS 25

Description 25

Results 25

5.3 COST MODEL 26

Description 26

Results 26

5.4 STAKES 28

Description 28

Results 28

6 AUTOMATED TESTING 29

6.1 AUTOMATED ANALYSIS 30

Description 30

Results 30

6.2 UNSAFE RUST CODE DETECTION 31

Description 31

Results 31

2



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE

0.1 Document Creation 08/21/2023

0.2 Document Updates 08/22/2023

0.3 Final Draft 08/23/2023

0.4 Draft Review 08/24/2023

0.5 Draft Review 08/24/2023

1.0 Remediation Plan 09/25/2023

1.1 Remediation Plan Review 09/25/2023

3



CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Isabel Burruezo Halborn Isabel.Burruezo@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Isabel.Burruezo@halborn.com


5

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Solana is an open-source project implementing a new, high-performance,

permissionless blockchain. Changes in scope affected several modules,

the most important ones are briefly described. Sealevel, Solana’s par-

allel smart contracts runtime, is a concurrent transaction processor.

Transactions specify their data dependencies upfront, and dynamic memory

allocation is explicit. By separating program code from the state it

operates on, the runtime can choreograph concurrent access. Gulf Stream

the transaction forwarding protocol, which is Solana’s mempool-less so-

lution for forwarding and storing transactions before processing them.

The Gossip Service acts as a gateway to nodes in the control plane. Val-

idators use the service to ensure information is available to all other

nodes in a cluster. TPU (Transaction Processing Unit) is the logic of

the validator responsible for block production.

Halborn conducted a security audit on a set of changes to the Solana

repository made between two different commits, beginning on August 21st,

2023 and ending on August 24th, 2023 . The security assessment was scoped

to the updates to the master branch of the solana GitHub repository.

Commit hashes and further details can be found in the Scope section of

this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided four weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana


In summary, Halborn did not identify any significant issue; however,

some recommendations were given to reduce the likelihood and impact of

risks, which were acknowledged by Solana Labs .

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of a manual review of the source code

and automated security testing to balance efficiency, timeliness, prac-

ticality, and accuracy in regard to the scope of the program audit.

While manual testing is recommended to uncover flaws in business logic,

processes, and implementation; automated testing techniques help enhance

coverage of programs and can quickly identify items that do not follow

security best practices.

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Manual program source code review to identify business logic issues.

• Mapping out possible attack vectors

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic vulnerabilities.

• Finding unsafe Rust code usage (cargo-geiger)

• Scanning dependencies for known vulnerabilities (cargo audit).

• Local runtime testing (solana-test-framework)

7

EX
EC

UT
IV

E
OV

ER
VI

EW



2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

8

EX
EC

UT
IV

E
OV

ER
VI

EW



2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

9

EX
EC

UT
IV

E
OV

ER
VI

EW



2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

10

EX
EC

UT
IV

E
OV

ER
VI

EW



Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

11

EX
EC

UT
IV

E
OV

ER
VI

EW



2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

12

EX
EC

UT
IV

E
OV

ER
VI

EW



The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

13

EX
EC

UT
IV

E
OV

ER
VI

EW



2.4 SCOPE

Code repositories:

1. Solana L1

• Repository: solana

• start: 124aaa95f65aac9a037db85a1ce27724bd2012ff

• final: 6fbe8ba3b034b3fb79dd701928ea49e0e4271314

• Modules in scope:

1. program-runtime (solana/program-runtime/src)

2. runtime (solana/runtime/src)

3. bpf_loader (solana/programs/bpf_loader/src)

Out-of-scope:

- third-party libraries and dependencies

- financial-related attacks

14

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana
https://github.com/solana-labs/solana/commit/124aaa95f65aac9a037db85a1ce27724bd2012ff
https://github.com/solana-labs/solana/commit/6fbe8ba3b034b3fb79dd701928ea49e0e4271314


3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 2

15

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) UNPATCHED VERSION OF
ED25519-DALEK DEPENDENCY

Informational
(0.0)

ACKNOWLEDGED

(HAL-02) MISSING CARGO OVERFLOW
CHECKS

Informational
(0.0)

ACKNOWLEDGED

16

EX
EC

UT
IV

E
OV

ER
VI

EW



17

FINDINGS & TECH
DETAILS



4.1 (HAL-01) UNPATCHED VERSION OF
ED25519-DALEK DEPENDENCY -
INFORMATIONAL (0.0)

Description:

An issue was identified in the used version of the ed25519-dalek which

introduces a potential “Double Public Key Signing Function Oracle Attack”

vulnerability concern.

In versions of ed25519-dalek prior to v2.0, private and public keys

are treated as separate types, allowing them to be combined into a

Keypair. Additionally, these versions provided APIs for serializing and

deserializing 64-byte private/public key pairs.

The critical concern lies in the inherent insecurity of these APIs and

serializations. Specifically, while computing the ‘S’ part of a cryp-

tographic signature, these versions use the public key as one of the

inputs, but the ‘R’ value is calculated independently of it.

Code Location:

Listing 1: Cargo.toml (Line 180)

178 dlopen_derive = "0.1.4"

179 eager = "0.1.0"

180 ed25519 -dalek = "=1.0.1"

Listing 2: runtime/Cargo.toml (Line 80)

78 [dev -dependencies]

79 assert_matches = { workspace = true }

80 ed25519 -dalek = { workspace = true }

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is strongly recommended to upgrade the dependency to a secure and

patched version (v2.0 or later) of ed25519-dalek. This will ensure

improved security and mitigate the potential vulnerabilities and risks

associated with the earlier versions.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

ACKNOWLDGED: The Solana Labs team acknowledged this finding.

4.2 (HAL-02) MISSING CARGO OVERFLOW
CHECKS - INFORMATIONAL (0.0)

Description:

It has been observed that the changes applied to the assessment’s scope

do not include the implementation of the overflow-checks=true flag in the

Cargo.toml files.

By default, overflow checks are disabled in optimized release builds. Con-

sequently, any overflows occurring in release builds will remain silent,

potentially causing unexpected application behavior. To ensure proper

overflow handling, it is advisable to include the overflow-checks=true

setting in the Cargo.toml file, even when using checked arithmetic through

functions like checked_* or saturating_*.

Code Location:

• program-runtime/Cargo.toml

• programs/bpf_loader/Cargo.toml

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation:

Add overflow-checks=true under the release profile in the Cargo.toml

files specified for recommended behavior.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Remediation Plan:

ACKNOWLDGED: The Solana Labs team acknowledged this finding.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



22

MANUAL TESTING



In the manual testing phase, the following scenarios were simulated.

The scenarios listed below were selected based on the severity of the

vulnerabilities Halborn was testing the program for.

5.1 COMPUTE BUDGET

Description:

In commit 5de4cd2 The inappropriate use of usize for the vari-

able representing the count of non-compute budget instructions,

num_non_compute_budget_instructions was addressed in the compute budget

module. It was replaced with the more suitable data type: u32.

This change was reviewed, and several tests have been performed to ensure

that no security risks have been accidentally introduced beside the proper

and expected calculation’s result.

Results:

No vulnerabilities were identified.

Process multiple no compute budget instructions which would exceed the

maximum value of the limit of compute units

23

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/commit/5de4cd28bcaa2e0a69a4d986598d1345c461b81e


Process multiple instructions including a ComputeBudget::Deprectaed with

supporting request units deprecated

Process multiple instructions including a ComputeBudget::Deprectaed with-

out supporting request units deprecated

24

MA
NU

AL
TE

ST
IN

G



5.2 TRANSACTION PRIORITY DETAILS

Description:

In commit 195469a support for deprecated compute budget instructions was

added when obtaining transaction priority details.

Tests were conducted to ensure that these changes do not introduce any

vulnerabilities, security risks, or compromise the correct functionality.

Results:

No vulnerabilities were identified.

Transaction priority details for multiple deprecated compute budget in-

structions

Transaction priority details for deprecated and set unit price compute

budget instructions

25

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/commit/195469a5f9ae350ffdf767e8c778fcfb894a7656


5.3 COST MODEL

Description:

In commit 8ed7ebe modifications were made to address the issue about cost

model being able to double count built-in instruction cost, described

in #32422.

These changes were implemented to ensure that the computation of

bpf_execution_cost adheres to the expected behavior.

Results:

No vulnerabilities were identified.

Get transaction cost with no-builtin and built-in instructions including

compute budget unit limit

26

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/commit/8ed7ebe801c25d83c1be73b04155fa18f91d9dc8
https://github.com/solana-labs/solana/pull/32422


Get transaction cost with no-builtin and built-in instruction, including

compute budget unit price

27

MA
NU

AL
TE

ST
IN

G



5.4 STAKES

Description:

In commit 8fea568 changes were added to solve the issue around the storage

of warm-up and cooldown parameters per delegation within the system. In

response to this issue, the decision has been made to deprecate the

usage of stake config and the warm-up/cooldown rate in the context of

delegation. Instead, a new approach is introduced where hardcoded values

will be employed directly within the stake program.

This aims to ensure uniformity in delegation behavior across all in-

stances, reducing complexity and potential configuration errors.

Results:

No vulnerabilities were identified.

Check and store with zero stake

28

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/commit/8fea56802a84c99808b98db245e7305cc0ccfa59


29

AUTOMATED TESTING



6.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-audit, a security scanner for vulnerabilities reported to the Rust-

Sec Advisory Database. All vulnerabilities published in https://crates.io

are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs

a scanning on Cargo.lock. Security Detections are only in scope. All

vulnerabilities shown here were already disclosed in the above report.

However, to better assist the developers maintaining this code, the au-

ditors are including the output with the dependencies tree, and this

is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results:

ID package Short Description

RUSTSEC-2022-0093 ed25519-dalek Double Public Key Signing Function Or-

acle Attack on ‘ed25519-dalek‘

RUSTSEC-2020-0071 time Potential segfault in the time crate

RUSTSEC-2023-0001 tokio Configuration corruption

30

AU
TO

MA
TE

D
TE

ST
IN

G

https://rustsec.org/advisories/RUSTSEC-2022-0093
https://github.com/time-rs/time/issues/293
https://rustsec.org/advisories/RUSTSEC-2023-0001


6.2 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.

Results:

No unsafe code blocks were identified in the packages in scope and their

dependencies.

31

AU
TO

MA
TE

D
TE

ST
IN

G



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan


	MANUAL TESTING
	COMPUTE BUDGET
	Description
	Results

	TRANSACTION PRIORITY DETAILS
	Description
	Results

	COST MODEL
	Description
	Results

	STAKES
	Description
	Results


	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results



