

Shared Memory and Token Swap
Code Review

Solana
25 February 2021
Version: 1.2

Presented by:
Kudelski Security Research Team
Kudelski Security – Nagravision SA

Corporate Headquarters
Kudelski Security – Nagravision SA
Route de Genève, 22-24
1033 Cheseaux sur Lausanne
Switzerland

For Public Disclosure

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 2 of 17

Copyright Notice
Kudelski Security, a business unit of Nagravision SA is a member of the Kudelski Group of Companies.
This document is the intellectual property of Kudelski Security and contains confidential and privileged
information. The reproduction, modification, or communication to third parties (or to other than the addressee)
of any part of this document is strictly prohibited without the prior written consent from Nagravision SA.

DOCUMENT PROPERTIES

Version: 1.2

File Name: Research_Report_Shared_Mem_and_Tokenswap_2020_V1.2

Publication Date: 25 February 2021

Confidentiality Level: For Public Disclosure

Document Owner: Scott Carlson – Director - Digital Asset Security

Document Recipient: Solana Foundation

Document Status: Approved

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 3 of 17

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 5

1.1 Engagement Limitations .. 5

1.2 Engagement Analysis .. 5

1.3 Observations .. 6

1.4 Issue Summary List ... 6

2. METHODOLOGY .. 7

2.1 Kickoff .. 7

2.2 Ramp-up .. 7

2.3 Review ... 7

2.4 Reporting ... 9

2.5 Verify .. 9

2.6 Additional Note .. 9

3. TECHNICAL DETAILS .. 10

3.1 Conversion from u64 to usize .. 10

3.2 Overridden functions .. 11

3.3 Duplicate test call ... 12

3.4 Missing tests .. 12

3.5 Possible partial excecution .. 13

3.6 Curve selection .. 13

APPENDIX A: ABOUT KUDELSKI SECURITY ... 15

APPENDIX B: DOCUMENT HISTORY ... 16

APPENDIX C: SEVERITY RATING DEFINITIONS ... 17

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 4 of 17

TABLE OF FIGURES

Figure 1 Issue Severity Distribution ... 6

Figure 2 Methodology Flow ... 7

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 5 of 17

EXECUTIVE SUMMARY

Kudelski Security ("Kudelski"), the cybersecurity division of the Kudelski Group, was engaged
by the Solana Foundation ("Solana") to conduct an external security assessment in the form
of a Shared Memory and Token Swap code review of the Solana Program Library application.

The parts of the Solana Program Library that were to be included in the engagement were

• Share Memory Program – https://github.com/solana-labs/solana-
programlibrary/tree/master/shared-memory

• Token-Swap Program – https://github.com/solana-labs/solana-program-
library/tree/master/tokenswap

The assessment was conducted remotely by the Kudelski Security. The tests took place from
December 1, 2020, to December 23, 2020, and was re-reviewed in late January 2021 to
ensure that the remediations have been completed. The review focused on the following
objectives:

1. To help the Client to better understand its security posture on the program and identify
risks in its application, logic, code, and functionality.

2. To provide a professional opinion on the maturity, adequacy, and efficiency of the
security measures that are in place.

3. To identify potential issues and include improvement recommendations based on the
result of our tests.

This report summarizes the tests performed and findings in terms of strengths and
weaknesses. It also contains detailed descriptions of the discovered vulnerabilities, steps the
Kudelski Security Teams took to exploit each vulnerability, and recommendations for
remediation.

1.1 Engagement Limitations
The engagement was limited to the contents of the Shared Memory and Token-Swap directory
in the Solana-Program-Library repository. The final commit included in the audit had the Git
identifier: b40e0dd. The engagement was time-boxed to 7 days.

1.2 Engagement Analysis
The Kudelski Security team conducted an audit of Solana Shared-Memory and Token-Swap
that consisted of reviewing the logic code.

As a result of our work, we identified 1 High, 1 Medium, 1 Low, and 4 Informational findings,
all which are remediated as of the issuance of this report.

Generally, the code base seems to be in good shape, but a lack of documentation for this and
related modules makes it harder to understand such things as the assumptions made for
cross-program calls.

During the engagement, quick and efficient communication with the development team took
place via Slack. The discussions made it possible to verify and verify the various discoveries
and quickly determine their severity.

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 6 of 17

Figure 1 Issue Severity Distribution

1.3 Observations
The code is generally well written and in good shape. The documentation needs to be created
and kept up-to-date since comments are sparse.

1.4 Issue Summary List

ID SEVERITY FINDING

KS-SHAREDMEM-F-01 Informational Conversion from u64 to usize

KS-TOKENSWAP-F-01 Informational Spelling errors.

KS-TOKENSWAP-F-02 Informational Possible maintainability issues.

KS-TOKENSWAP-F-03 Informational Duplicate lines in test.

KS-TOKENSWAP-F-04 Low Missing test.

KS-TOKENSWAP-F-05 High Attack could possibly fail only half of a swap.

KS-TOKENSWAP-F-06 Medium Possible fee manipulation by switching curve.

0

1

2

3

4

High Medium Low Informational

Issue Severity Distribution

High Medium Low Informational

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 7 of 17

2. METHODOLOGY

Kudelski Security uses the following high-level methodology when approaching engagements.
They are broken up into the following phases.

Figure 2 Methodology Flow

2.1 Kickoff
We typically set up a kickoff meeting where project stakeholders are gathered to discuss the
project as well as the responsibilities of participants. During this meeting we verify the scope
of the engagement and discuss the project activities. It's an opportunity for both sides to ask
questions and get to know each other. By the end of the kickoff there is an understanding of
the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

2.2 Ramp-up
Ramp-up consists of the activities necessary to gain proficiency on the project. This can
include the steps needed for familiarity with the codebase or technological innovation utilized.
This may include, but is not limited to:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for specific languages

• Researching common flaws and recent technological advancements

2.3 Review
The review phase is where much of the work on the engagement is completed. This is the
phase where we analyze the project for flaws and issues that impact the security posture.
Depending on the project this may include an analysis of the architecture, a review of the code,
and a specification matching to match the architecture to the implemented code.

Kickoff Ramp-up Review Report Verify

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 8 of 17

In this code audit, we performed the following tasks:

1. Security analysis and architecture review

2. Review of the code written for the project

3. Assessment of the cryptographic primitives used

4. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the experience
of the reviewer. No dynamic testing was performed, only the use of custom-built scripts and
tools were used to assist the reviewer during the testing. We discuss our methodology in more
detail in the following sections.

Code Safety

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues
• Poor coding practices and unsafe behavior
• Leakage of secrets or other sensitive data through memory mismanagement
• Susceptibility to misuse and system errors
• Error management and logging

This list is general list and not comprehensive, meant only to give an understanding of the
issues we are looking for.

Cryptography

If present, we analyze the cryptographic primitives and components as well as their
implementation. We check in particular:

• Matching of the proper cryptographic primitives to the desired cryptographic
functionality needed

• Security level of cryptographic primitives and their respective parameters (key lengths,
etc.)

• Safety of the randomness generation in general as well as in the case of failure
• Safety of key management
• Assessment of proper security definitions and compliance to use cases
• Checking for known vulnerabilities in the primitives used

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the
specification. We checked for things such as:

• Proper implementation of the documented protocol phases
• Proper error handling
• Adherence to the protocol logical description

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 9 of 17

2.4 Reporting
Kudelski Security delivers a preliminary report in PDF format that contains an executive
summary, technical details, and observations about the project.

The executive summary contains an overview of the engagement including the number of
findings as well as a statement about our general risk assessment of the project as a whole.
We may conclude that the overall risk is low but depending on what was assessed we may
conclude that more scrutiny of the project is needed.

We not only report security issues identified but also informational findings for improvement
categorized into several buckets:

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking
and recommendations for mitigation.

As we perform the audit, we may identify issues that aren't security related, but are general
best practices and steps, that can be taken to lower the attack surface of the project. We will
call those out as we encounter them and as time permits.

As an optional step, we can agree on the creation of a public report that can be shared and
distributed with a larger audience.

2.5 Verify
After the preliminary findings have been delivered, this could be in the form of the approved
communication channel or delivery of the draft report, we will verify any fixes within a window
of time specified in the project. After the fixes have been verified, we will change the status of
the finding in the report from open to remediated.

The output of this phase will be a final report with any mitigated findings noted.

2.6 Additional Note
It is important to note that, although we did our best in our analysis, no code audit or
assessment is a guarantee of the absence of flaws. Our effort was constrained by resource
and time limits along with the scope of the agreement.

While assessment the severity of the findings, we considered the impact, ease of exploitability,
and the probability of attack. These is a solid baseline for severity determination. Information
about the severity ratings can be found in Appendix C of this document.

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 10 of 17

3. TECHNICAL DETAILS

This section contains the technical details of our findings as well as recommendations for
improvement.

3.1 Conversion from u64 to usize
Finding ID: KS-SHAREDMEM-F-01

Severity: Informational

Status: Remediated

Description
When retrieving the length of the serialized data, several conversions from u64 to usize are
made. Working with a 32-bit process would mean that the usize is equal to u32 instead of the
expected u64. Since the process only has access to a 32-bit address space, the data object
still would not fit in the memory, which renders the issue moot. Regardless the conversion
does add unnecessary complexity to the implementation, which reasonably should be
remedied.

This issue is only a problem with transactions that are larger than 4 GB in size. The issue
would be that the transaction is truncated. If you have a function that is very meticulous in
getting all the bits of the transaction, as a hash function, it would be a problem.

Proof of Issue
File path:
shared-memory/program/src/lib.rs line 64 (deserialize_input_parameters)
shared-memory/program/src/lib.rs line 74 (deserialize_input_parameters)
shared-memory/program/src/lib.rs line 102 (entrypoint)
shared-memory/program/src/lib.rs line 106 (entrypoint)
Severity and Impact Summary
Based on further investigation and the Solana development team, we could conclude that this
is informational unless the BPF is deployed in a 32-bit environment.
Recommendation
Have the variables be of type u64 instead of usize.

References

Finding ID: KS-TOKENSWAP-F-01

Severity: Informational

Status: Remediated

There are some misspelled comments in the code.
The following is one example.

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 11 of 17

Proof of Issue
File path: solana-program-library\token-swap\program\src\curve\calculator.rs
Beginning line number: 11
/// Helper function for calculating swap fee
Severity and Impact Summary
None
Recommendation
Although not a security risk, misspelled or inappropriate words could lead to the wrong advise to
the code reader.

References

3.2 Overridden functions
Finding ID: KS-TOKENSWAP-F-02

Severity: Informational

Status: Remediated

Description

The base CurveCalculator's functions: owner_withdraw_fee, trading_fee, owner_trading_fee,
and host_fee are overridden in an identical manner in all of its derived implementations.

File path: solana-program-library\token-swap\program\src\curve\constant_product.rs

Beginning line number: 67

File path: solana-program-library\token-swap\program\src\curve\stable.rs

Beginning line number: 166

File path: solana-program-library\token-swap\program\src\curve\flat.rs

Beginning line number: 61

Severity and Impact Summary

Future updates to the code could cause unintended divergence in functionality between the
different curves.

Recommendation

Since no other curve type can be used, implementing these functions in the base object would
be cleaner and easier to maintain.

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 12 of 17

3.3 Duplicate test call

Finding ID: KS-TOKENSWAP-F-03

Severity: Informational

Status: Status: Remediated

Description

Duplicate line in test.

Proof of Issue

Filename:solana-program-library\token-swap\program\src\curve\constant_product.rs

Beginning Line Number: 243

Severity and Impact Summary

None

Recommendation

Remove line or alter test data.

3.4 Missing tests

Finding ID: KS-TOKENSWAP-F-04

Severity: Low

Status: Remediated

Description

Curve missing in test.

Proof of Issue

Filename: solana-program-library\token-swap\program\src\processor.rs

Beginning Line Number: 3631

Severity and Impact Summary

Limited impact.

check_pool_token_rate(5, 5, 10, Some(2));
check_pool_token_rate(5, 5, 10, Some(2));

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 13 of 17

Recommendation

Add test for stable curve.

3.5 Possible partial execution

Finding ID: KS-TOKENSWAP-F-05

Severity: High

Status: Remediated

Description

It might be possible to set up a contract that will fail a swap or withdraw in the middle of a
transaction.

Proof of Issue

Filename: solana-program-library\token-swap\program\src\processor.rs

Beginning Line Number: 317

Severity and Impact Summary

If performed, a withdraw, or swap might end up only doing one transfer.

Recommendation

Make sure that everything is processed in one step on the blockchain.

Remediation: As a remediation to this issue, it appears that the team reworked the whole
"nested instruction" idea and now it stops/fails if any of the inner instructions stop/fail and the
entire transaction is stopped & rolled-back. This was a major redesign as it now handles all
problems from cross-module invocations in the same manner. This code plays an important
role and must continue to be managed effectively through updates.

3.6 Curve selection

Finding ID: KS-TOKENSWAP-F-06

Severity: Medium

Status: Remediated

Description

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 14 of 17

There are two valid alternatives to the constant product curve that would result in different
rates when applied to a swap.

Proof of Issue

File path: solana-program-library\token-swap\program\src\processor.rs

Beginning line number: 253

Severity and Impact Summary

Manipulating the account info in the call and set a flat curve for a large transaction

could be beneficial for the caller.

Recommendation

Remove unused curves.

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 15 of 17

APPENDIX A: ABOUT KUDELSKI SECURITY

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and media
security solutions to enterprises and public sector institutions. Our team of security experts
delivers end-to-end consulting, technology, managed services, and threat intelligence to help
organizations build and run successful security programs. Our global reach and cyber
solutions focus is reinforced by key international partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit
https://www.kudelskisecurity.com.

Kudelski Security

route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

Kudelski Security

5090 North 40th Street

Suite 450

Phoenix, Arizona 85018

This report and its content is copyright (c) Nagravision SA, all rights reserved.

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 16 of 17

APPENDIX B: DOCUMENT HISTORY

VERSION STATUS DATE AUTHOR COMMENTS

0.93 Final Draft 8 February
2021

Mikael Bjorn, Scott Carlson Final Review

1.1 Final 8 February
2021

Mikael Bjorn, Scott Carlson

1.2 For Public
Disclosure

25 Feb
2021

Scott Carlson

Scottj.carlson@kudelskisecurity.com

Solana | Shared Memory and Token Swap Code Review
25 February 2021

© 2021 Nagravision SA / All Rights Reserved Page 17 of 17

APPENDIX C: SEVERITY RATING DEFINITIONS

Kudelski Security uses a custom approach when determining criticality of identified issues.
This is meant to be simple and fast, providing customers with a quick at a glance view of the
risk an issue poses to the system. As with anything risk related, these findings are situational.
We consider multiple factors when assigning a severity level to an identified vulnerability. A
few of these include:

• Impact of exploitation

• Ease of exploitation

• Likelihood of attack

• Exposure of attack surface

• Number of instances of identified vulnerability

• Availability of tools and exploits

SEVERITY DEFINITION

High The identified issue may be directly exploitable causing an immediate
negative impact on the users, data, and availability of the system for
multiple users.

Medium The identified issue is not directly exploitable but combined with other
vulnerabilities may allow for exploitation of the system or exploitation
may affect singular users. These findings may also increase in severity
in the future as techniques evolve.

Low The identified issue is not directly exploitable but raises the attack
surface of the system. This may be through leaking information that an
attacker can use to increase the accuracy of their attacks.

Informational Informational findings are best practice steps that can be used to harden
the application and improve processes.

