// HALBORN

Solana Labs -
Solana Runtime
Commission Update

Solana Program Security Audit

Prepared by: Halborn
Date of Engagement: January 4th, 2023 - Januar y 6th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY

CONTACTS

1 EXECUTIVE OVERVIEW

1.7 INTRODUCTION

1.2 AUDIT SUMMARY

RISK METHODOLOGY

1.3 SCOPE

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW

3 FINDINGS & TECH DETAILS

9

3.1 (HAL-01) COMMISSION CAN BE UPDATED HALFWAY THROUGH EPOCH - IN-

FORMATIONAL
Description
Code Location
Recommendation
Remediation Plan

4 MANUAL TESTING

4.1 UPDATING COMMISSION
Description
Results

5 AUTOMATED TESTING

5.1 AUTOMATED ANALYSIS
Description

Results

11

11

11

12

12

13

14

14

14

15

16

16

16

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 01/05/2023 Michael Smith
0.2 Document Review 01/06/2023 Piotr Cielas
0.3 Document Review 01/06/2023 Gabi Urrutia
1.0 Remediation Plan 05/19/2023 Piotr Cielas
1.1 Remediation Plan Review | ©5/19/2023 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Piotr Cielas Halborn Piotr.Cielas@halborn.com
Isabel Burruezo Halborn Isabel.Burruezo@halborn.com
Michael Smith Halborn Michael.Smith@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Isabel.Burruezo@halborn.com
mailto:Michael.Smith@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

The Solana network uses a proof of stake consensus mechanism, allowing
validators and stakers to participate in securing the network. Validators
are rewarded for their effort and distribute the reward to stakers after
charging a commission. Currently, validators can rug pull users by
changing the commission right before rewards are distributed, this update
aims to mitigate this.

Solana Labs engaged Halborn to conduct a security audit on their Solana
programs, beginning on January 4th, 2023 and ending on January 6th, 2023

The security assessment was scoped to the programs provided in the
solana GitHub repository. Commit hashes and further details can be found
in the Scope section of this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided 3 days for the engagement and assigned
one full-time security engineer to audit the security of the programs in
scope. The security engineer is a blockchain and Solana program secu-
rity expert/experts with advanced penetration testing and Solana program

hacking skills, and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

®* Identify potential security issues within the programs

Halborn performed a combination of a manual review of the source code
and automated security testing to balance efficiency, timeliness, prac-
ticality, and accuracy in regard to the scope of the program audit.
While manual testing is recommended to uncover flaws in business logic,
processes, and implementation; automated testing techniques help enhance
coverage of programs and can quickly identify items that do not follow
security best practices.

https://github.com/solana-labs/solana

EXECUTIVE OVERVIEW

The following phases and associated tools were used throughout the term
of the audit:

® Research into the architecture, purpose, and use of the platform.
Manual program source code review to identify business logic issues.
Mapping out possible attack vectors

®* Thorough assessment of safety and usage of critical Rust variables
and functions in scope that could lead to arithmetic vulnerabilities.

Scanning dependencies for known vulnerabilities (cargo audit).

Local runtime testing (solana-test-framework)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk
assessment methodology by measuring the LIKELIHOOD of a security incident
and the IMPACT should an incident occur. This framework works for commu-
nicating the characteristics and impacts of technology vulnerabilities.
The quantitative model ensures repeatable and accurate measurement while
enabling users to see the underlying vulnerability characteristics that
were used to generate the Risk scores. For every vulnerability, a risk
level will be calculated on a scale of 5 to 1 with 5 being the highest
likelihood or impact.

RISK SCALE - LIKELIHOOD

Almost certain an incident will occur.

High probability of an incident occurring.
Potential of a security incident in the long term.

Low probability of an incident occurring.

- N W h O
|

Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.
4 - May cause a significant level of impact or loss.

EXECUTIVE OVERVIEW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

10 - CRITICAL

9_

7
5 -
3

- h O

HIGH

MEDIUM

LOW

VERY LOW AND INFORMATIONAL

EXECUTIVE OVERVIEW

1.3 SCOPE

Code repositories:
1. Project Name

®* Repository: Solana
® Pull Request: 29389
®* Programs in scope:

1. Vote (programs/vote)
2. SDK (sdk)

Out-of-scope:
- third-party libraries and dependencies
- financial-related attacks

https://github.com/solana-labs/solana
https://github.com/solana-labs/solana/pull/29389

EXECUTIVE OVERVIEW

IMPACT

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH

0 0

LIKELIHOOD

EXECUTIVE OVERVIEW

SECURITY ANALYSIS

(HAL-01) COMMISSION CAN BE UPDATED
HALFWAY THROUGH EPOCHS

RISK LEVEL

REMEDIATION DATE

ACKNOWLEDGED

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

3.1 (HAL-01) COMMISSION CAN BE
UPDATED HALFWAY THROUGH EPOCH -
INFORMATIONAL

Description:

Users stake their SOL to validators, who in turn vote on which blocks
they believe should be added to the network. Validators are rewarded
SOL for their efforts and distribute these rewards to stakers after
taking a commission. Prior to this update, validators could change their
commission moments before rewards are distributed, now validators can only
change their commission in the first half of an epoch or approximately
twenty-four hours before rewards are distributed.

Code Location:

440 /// Given the current slot and epoch schedule, determine if a
L, commission change

441 /// is allowed

442 pub fn is_commission_update_allowed(slot: Slot, epoch_schedule: &
L, EpochSchedule) -> bool {

443 // always allowed during warmup epochs

444 if let Some(relative_slot) = slot

445 .saturating_sub(epoch_schedule.first_normal_slot)

446 .checked_rem(epoch_schedule.slots_per_epoch)

447 {

448 // allowed up to the midpoint of the epoch

449 relative_slot.saturating_mul (2) <= epoch_schedule.
L, slots_per_epoch

450 } else {

451 // no slots per epoch, just allow it, even though this
L, should never happen

452 true

453 }

454 3}

11

FINDINGS & TECH DETAILS

Recommendation:

Users should be informed that validators can still change their commission
after staking their SOL just that now commissions can’t be changed during
the second half of an epoch.

Remediation Plan:

ACKNOWLEDGED: The Solana team acknowledged this issue.

12

MANUAL TESTING

MANUAL TESTING

In the manual testing phase, the following scenarios were simulated.
The scenarios listed below were selected based on the severity of the
vulnerabilities Halborn was testing the program for.

4.1 UPDATING COMMISSION

Description:

The vote program’s UpdateCommission instruction should fail if the vote
account attempts to change the commission after the second half of the
epoch. Several tests were done to execute UpdateCommission instructions
at different slots in the epoch to ensure the code behaves as expected.

Results:

No code vulnerabilities were identified.

14

AUTOMATED TESTING

AUTOMATED TESTING

5.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with the detection of
well-known security issues and vulnerabilities. Among the tools used was
cargo-audit, a security scanner for vulnerabilities reported to the Rust-
Sec Advisory Database. All vulnerabilities published in https://crates.io
are stored in a repository named The RustSec Advisory Database. cargo
audit is a human-readable version of the advisory database which performs
a scanning on Cargo.lock. Security Detections are only in scope. All
vulnerabilities shown here were already disclosed in the above report.
However, to better assist the developers maintaining this code, the au-
ditors are including the output with the dependencies tree, and this
is included in the cargo audit output to better know the dependencies
affected by unmaintained and vulnerable crates.

Results:
ID package Short Description
RUSTSEC-2020-0071 | time Potential segfault, Upgrade to >=0.2.23

RUSTSEC-2021-0139 | ansi_term | ansi_term is unmaintained

RUSTSEC-2020-0016 | net2 net2 crate has been deprecated; use socket?2
instead
RUSTSEC-2021-0127 | serde_- serde_cbor is unmaintained
cbor

16

https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2021-0139
https://rustsec.org/advisories/RUSTSEC-2020-0016
https://rustsec.org/advisories/RUSTSEC-2021-0127

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Recommendation
	Remediation Plan

	MANUAL TESTING
	UPDATING COMMISSION
	Description
	Results

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results

