// HALBORN

Solana Labs -
Runtime 77a56b0
-> 124aaa9

L1 Security Assessment

Prepared by: Halborn
Date of Engagement: June 12th, 2023 - July 14th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY

CONTACTS

1

4.2

EXECUTIVE OVERVIEW
INTRODUCTION

ASSESSMENT SUMMARY

TEST APPROACH & METHODOLOGY
RISK METHODOLOGY
EXPLOITABILITY

IMPACT

SEVERITY COEFFICIENT

SCOPE

ASSESSMENT SUMMARY & FINDINGS OVERVIEW
FINDINGS & TECH DETAILS

(HAL-@1) MISSING CARGO OVERFLOW CHECKS - INFORMATIONAL(@.0)
Description

Code Location

BVSS

Recommendation

Remediation Plan

(HAL-@2) OPEN TO-DO - INFORMATIONAL (0.0)

Description

Code Location

BVSS

Recommendation

10

11

13

15

16

17

19

19

19

19

19

19

20

20

21

23

23

4.3

Remediation Plan 23

(HAL-03) INCOMPLETE FUNCTIONALITY IMPLEMENTATION - INFORMA-

TIONAL(Q.9) 24
Description 24
Code Location 25
BVSS 28
Recommendation 28
Remediation Plan 29
MANUAL TESTING 30

IMPLICIT HANDLING OF DELAY VISIBILITY TOMBSTONE AND USABLE EN-

TRIES 31
Description 31
Results 31
PRUNE ON FEATURE SET TRANSITION 35
Description 35
Results 35
PURGE INCOMPLETE BANK SNAPSHOTS 37
Description 37
Results 37
LOADED PROGRAMS CACHE AND TRANSACTION BATCH CACHE 38
Description 38
Results 38
AUTOMATED TESTING 39
AUTOMATED ANALYSIS 40

Description 40

Results

6.2 UNSAFE RUST CODE DETECTION

Description

Results

40

41

41

41

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 06/12/2023 Isabel Burruezo
0.2 Document Updates 07/11/2023 Isabel Burruezo
0.3 Draft Version 07/12/2023 Isabel Burruezo
0.4 Draft Review 07/12/2023 Piotr Cielas
0.5 Draft Review 07/12/2023 Gabi Urrutia
1.0 Remediation Plan 08/22/2023 Isabel Burruezo
1.1 Remediation Plan 08/30/2023 Isabel Burruezo
1.2 Remediation Plan Review | ©8/30/2023 Piotr Cielas
1.3 Remediation Plan Review | ©9/01/2023 Piotr Cielas

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Piotr Cielas Halborn Piotr.Cielas@halborn.com
Isabel Burruezo Halborn Isabel.Burruezo@halborn.com
Michael Smith Halborn Michael.Smith@halborn.com

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Isabel.Burruezo@halborn.com
mailto:Michael.Smith@halborn.com

EXECUTIVE OVERVIEW

EXECUTIVE OVERVIEW

1.7 INTRODUCTION

Solana is an open-source project implementing a new, high-performance,
permissionless blockchain. Changes in scope affected several modules,
the most important ones are briefly described. Sealevel, Solana’s par-
allel smart contracts runtime, is a concurrent transaction processor.
Transactions specify their data dependencies upfront, and dynamic memory
allocation is explicit. By separating program code from the state it
operates on, the runtime can choreograph concurrent access.

Halborn conducted a security assessment on a set of changes to the Solana
repository made between two different commits, beginning on June 12th,
2023 and ending on July 14th, 2023 . The security assessment was scoped
to the updates to the master branch of the solana GitHub repository.
Commit hashes and further details can be found in the Scope section of
this report.

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided five weeks for the engagement and assigned
a full-time security engineer to verify the security of the smart contract.
The security engineer is a blockchain and smart-contract security expert
with advanced penetration testing and smart-contract hacking skills, and

deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

®* Ensure that smart contract functions operate as intended

Identify potential security issues with the smart contracts

In summary, Halborn did not identify any significant issues; however,
some recommendations were given to reduce the likelihood and impact of
risks, which were acknowledged by the Solana Labs team.

https://github.com/solana-labs/solana

EXECUTIVE OVERVIEW

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of a manual review of the source code and
automated security testing to balance efficiency, timeliness, practical-
ity, and accuracy in regard to the scope of the assessment. While manual
testing is recommended to uncover flaws in business logic, processes, and
implementation; automated testing techniques help enhance coverage and
can quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term
of the assessment:

®* Research into the architecture, purpose, and use of the platform.
® Manual source code review to identify business logic issues.
® Mapping out possible attack vectors

®* Thorough assessment of safety and usage of critical Rust variables
and functions in scope that could lead to arithmetic vulnerabilities.

®* Finding unsafe Rust code usage (cargo-geiger)

® Scanning dependencies for known vulnerabilities (cargo audit).

® Local runtime testing (solana-test-framework)

EXECUTIVE OVERVIEW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two
sets of Metrics and a Severity Coefficient. This system is inspired by
the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability
captures the ease and technical means by which vulnerabilities can be
exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of
the ranking with two factors: Reversibility and Scope. These capture the
impact of the vulnerability on the environment as well as the number of
users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and
10 corresponding to the highest security risk. This provides an objective
and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-
nerabilities based on their level of risk to address the most critical
issues in a timely manner.

EXECUTIVE OVERVIEW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker
relative to sending a single transaction on the relevant blockchain.
Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in
order to exploit the vulnerability. Includes but is not limited to macro
situation, available third-party liquidity and regulatory challenges.

Metrics:
Exploitability Metric . :
Metric Value Numerical Value
(mg)
L Arbitrary (AO:A) 1
Attack Origin (AO) o
Specific (AO:S) 0.2
Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33
Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability /£ is calculated using the following formula:

E = n Me

10

EXECUTIVE OVERVIEW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources
managed by the contract due to a successfully exploited vulnerability.
Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-
ity. Integrity refers to the trustworthiness and veracity of data stored
and/or processed on-chain. Integrity impact directly affecting Deposit
or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-
sulting from a successfully exploited vulnerability. This metric refers
to smart contract features and functionality, not state. Availability
impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either
users or owners.

11

EXECUTIVE OVERVIEW

Metrics:

Impact Metric

Metric Value

Numerical Value

(mp)

None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75

Critical (I:C) 1

None (I:N) 0
Low (I:L) 0.25
Integrity (I) Medium (I:M) 0.5
High (I:H) .75

Critical (I:C) 1

None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75

Critical 1

None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75

Critical (D:C) 1

None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium: (Y:M) 0.5
High: (Y:H) 0.75

Critical (Y:H)

Impact / is calculated using the following formula:

I = max(my) +

> my; — max(my)

4

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be
reversed. For upgradeable contracts, assume the contract private key is
available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-
sources in other contracts.

EXECUTIVE OVERVIEW

Coefficient _ :
©) Coefficient Value Numerical Value
None (R:N) 1
Reversibility (r) Partial (R:P) 0.5
Full (R:F) 0.25
Changed (S:C) 1.25

Scope (s)

Unchanged (S:U)

Severity Coefficient (' is obtained by the following product:

C=rs

13

EXECUTIVE OVERVIEW

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC = 10)

The score is rounded up to 1 decimal places.

Severity Score Value Range
Critical 9 -10
High 7 -8.9
4.5 - 6.9
2 - 4.4
0 -1.9

14

EXECUTIVE OVERVIEW

2.4 SCOPE

Code repositories:
1. Solana L1

®* Repository: solana

® start: 77a56bo
® final: 124aaa9

® Modules in scope:

1. program-runtime (solana/program-runtime/src)
2. runtime (solana/runtime/src)

3. bpf_loader (solana/programs/bpf_loader/src)

Out-of-scope:
- third-party libraries and dependencies
- financial-related attacks

15

https://github.com/solana-labs/solana
https://github.com/solana-labs/solana/commit/77a56b02eae5807465fbf1c8715a4b805f10c692
https://github.com/solana-labs/solana/commit/124aaa95f65aac9a037db85a1ce27724bd2012ff

EXECUTIVE OVERVIEW

3. ASSESSMENT SUMMARY & FINDINGS

OVERVIEW

CRITICAL

HIGH

0

16

EXECUTIVE OVERVIEW

SECURITY ANALYSIS

(HAL-01) MISSING CARGO OVERFLOW
CHECKS

(HAL-02) OPEN TO-DO

(HAL-03) INCOMPLETE FUNCTIONALITY
IMPLEMENTATION

RISK LEVEL REMEDIATION DATE

NOT APPLICABLE

ACKNOWLEDGED

ACKNOWLEDGED

17

FINDINGS & TECH
DETAILS

FINDINGS & TECH DETAILS

4.1 (HAL-01) MISSING CARGO OVERFLOW
CHECKS - INFORMATIONAL (0.0)

Description:

We have noticed that the Cargo.toml file does not include the overflow-
checks=true setting. By default, overflow checks are disabled in op-
timized release builds. Consequently, if an overflow occurs in release
builds, it will be suppressed, resulting in unexpected application be-
havior. It is advisable to include the overflow-checks=true check in the
Cargo.toml file, even if checked arithmetic is employed using checked_

or saturating_* functions.

Code Location:

® program-runtime/Cargo. toml
® programs/bpf_loader/Cargo. toml

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation:

It is strongly advised to include the overflow-checks=true configuration
under the release profile within your Cargo.toml file.

Remediation Plan:

NOT APPLICABLE: The code in scope for this audit does not use unchecked
integer arithmetic, so Solana Labs has opted not to incur potential
performance penalties by enabling overflow checks.

19

FINDINGS & TECH DETAILS

4.2 (HAL-02) OPEN TO-DO -
INFORMATIONAL (0.0)

Description:

The transaction priority detail code is responsible for determining the
priority and execution details of transactions in the network. The
get_transaction_priority_details function is responsible for calculating
and providing the priority details of a transaction. This information
helps nodes and validators determine how to process the transaction.

An open to-do item was discovered in the transaction_priority_details.rs
file.

The round_compute_unit_price_enabled parameter was introduced to the
get_transaction_priority_details() and process_compute_budget_instruction
() functions. However, currently, it is not utilized. Instead, a TODO
comment in the call to the process_instructions() function indicates
that it should be provided in the future.

Additionally, several other to-do items have been identified in the
following files:

® runtime/src/serde_snapshot/newer.rs
®* runtime/src/bank.rs

While none of these to-dos are considered security risks, it is cru-
cial to implement all the required functionalities before undergoing an
assessment. This measure ensures that unverified bugs do not arise in
future implementations.

20

FINDINGS & TECH DETAILS

Code Location:

16 pub trait GetTransactionPriorityDetails {

17 fn get_transaction_priority_details(

18 &self,

19 round_compute_unit_priceensbled: bool, |
20) -> Option<TransactionPriorityDetails>;

21

Y fn process_compute_budget_instruction<'a>(

23 instructions: impl Iterator<Item = (&'a Pubkey, &'a

L, CompiledInstruction)>,

2 _round compute_unitpriceenabled: bool,

25) -> Option<TransactionPriorityDetails> {

26 let mut compute_budget = ComputeBudget::default();

27 let prioritization_fee_details = compute_budget

28 .process_instructions(

29 instructions,

30 true, // use default units per instruction

31 false, // stop supporting prioritization by

L, request_units_deprecated instruction

32 true, // enable request heap frame instruction
33 true, // enable support set accounts data size

L, instruction

34
Ls
)

35

36 .ok()7?;

37 Some(TransactionPriorityDetails {

38 priority: prioritization_fee_details.get_priority(),
39 compute_unit_limit: compute_budget.compute_unit_limit,
40 i9)

205 let epoch_reward_status = serializable_bank

206 .bank

207 .get_epoch_reward_status_to_serialize();

208 match get_serialize_bank_fields(

209 SerializableVersionedBank::from(fields),

210 SerializableAccountsDb::<'a, Self> {

211 accounts_db: &serializable_bank.bank.rc.accounts.

21

FINDINGS & TECH DETAILS

L, accounts_db,

212 slot: serializable_bank.bank.rc.slot,

213 account_storage_entries: serializable_bank.
L, snapshot_storages,

214 phantom: std::marker::PhantomData::default(),

215 3,

216 // Additional fields, we manually store the lamps per
L, signature here so that

217 // we can grab it on restart.
Ly

219 lamports_per_signature,

220 None::<BankIncrementalSnapshotPersistence>,

221 serializable_bank

222 .bank

223 .get_epoch_accounts_hash_to_serialize ()

224 .map (| epoch_accounts_hash| *epoch_accounts_hash.as_ref
L 0)),

225 epoch_reward_status,

226) {

227 BankFieldsToSerialize::WithoutEpochRewardStatus (data) =>
L, data.serialize(serializer),

228 BankFieldsToSerialize::WithEpochRewardStatus(data) => data
L, .serialize(serializer),

229 3}

777 is_delta,

Ly
779 builtin_programs: _,
780 runtime_config: _,

6582 if l!accounts_to_store.is_empty () {
583
L
5584
Ly
5585 let (_, measure) = measure! (self.store_accounts((

b586 self.slot (),

22

FINDINGS & TECH DETAILS

p587 &accounts_to_storel[..],

p588 self.include_slot_in_hash ()

p589 D))

p590 time_storing_accounts_us += measure.as_us();
p591 }

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation:

Ensure that the pending to-do items are either implemented or evaluated

for removal if they will not be incorporated into future releases.

Remediation Plan:

ACKNOWLEDGED: The Solana Labs team acknowledged this issue.

23

FINDINGS & TECH DETAILS

4.3 (HAL-03) INCOMPLETE
FUNCTIONALITY IMPLEMENTATION -
INFORMATIONAL (0.0)

Description:

In the accounts’ module of Solana, the RewardInterval enum was intro-
duced. In includes a variant called OutsideInterval, which represents
the slot in the epoch that falls outside the reward distribution in-
terval. This new enum value is used as a parameter in calls to func-
tions such as load_accounts_with_fee_and_rent(), load_accounts(), and
load_transaction_accounts().

It is important to note that the current implementation of this addition
does not introduce any changes to the runtime, as it is still a work
in progress. The RewardInterval enum is a preparatory step for future
updates, indicating that the implementation is underway but not yet fully
integrated or functional.

This still ongoing implementation also happens in the tiered accounts
storage module. Its purpose can be found explained in the proposal tiered-
accounts-db-storage; however, its implementation is still in progress and
until it is not finalized it is not possible to verify its full impact
as well as certain features such as the immutability of the account file
once it is created.

It is important to mention that this can also be found in part of the
partitioned epoch rewards implementation with the following functions in
the bank and metrics:

report_partitioned_reward_metrics
partitioned_epoch_rewards_config
partitioned_rewards_stake_account_stores_per_block
®* get_reward_calculation_num_blocks

®* set_epoch_reward_status_active

24

https://github.com/solana-labs/solana/blob/067942d199790322bc8ca44e72feea0583736d92/docs/src/proposals/tiered-accounts-db-storage.md
https://github.com/solana-labs/solana/blob/067942d199790322bc8ca44e72feea0583736d92/docs/src/proposals/tiered-accounts-db-storage.md

FINDINGS & TECH DETAILS

Code Location:

85 pub(crate) enum RewardInterval {

86 /// the slot within the epoch is OUTSIDE the reward
L, distribution interval

87 OutsideInterval,

88 3}

523 fn load_accounts_with_fee_and_rent(

524 tx: Transaction,

525 ka: &[TransactionAccount],

526 lamports_per_signature: u64,

527 rent_collector: &RentCollector,

528 error_counters: &mut TransactionErrorMetrics,

529 feature_set: &FeatureSet,

530 fee_structure: &FeeStructure,

531) -> Vec<TransactionlLoadResult> {

532 let mut hash_queue = BlockhashQueue::new(100);

533 hash_queue.register_hash(&tx.message().recent_blockhash,

L, lamports_per_signature);

534 let accounts = Accounts::new_with_config_for_tests(
535 Vec::new(),

536 &ClusterType::Development,

537 AccountSecondaryIndexes::default(),

538 AccountShrinkThreshold::default (),

539);

540 for ka in ka.iter() {

541 accounts.store_for_tests(0, &ka.0, &ka.1);

542 3}

543

544 let ancestors = vec![(@, @)].into_iter().collect();
545 let sanitized_tx = SanitizedTransaction::

L, from_transaction_for_tests(tx);

546 accounts.load_accounts(
547 &ancestors,

548 &[sanitized_tx],

549 vec! [(Ok(()), None)l,
550 &hash_queue,

551 error_counters,

552 rent_collector,

FINDINGS & TECH DETAILS

553 feature_set,

554 fee_structure,

555 None ,

556 RewardInterval::QutsideInterval,

557 &HashMap::new(),

558 &LoadedProgramsForTxBatch::default(),

677 pub(crate) fn load_accounts(

678 &self,

679 ancestors: &Ancestors,

680 txs: &[SanitizedTransaction],

681 lock_results: Vec<TransactionCheckResult>,

682 hash_queue: &BlockhashQueue,

683 error_counters: &mut TransactionErrorMetrics,

684 rent_collector: &RentCollector,

685 feature_set: &FeatureSet,

686 fee_structure: &FeeStructure,

687 account_overrides: Option<&AccountOverrides>,

688 in_reward_interval: RewardInterval,

689 program_accounts: &HashMap<Pubkey, &Pubkey>,

690 loaded_programs: &LoadedProgramsForTxBatch,

691) -> Vec<TransactionlLoadResult> {

692 txs.iter ()

693 .zip(lock_results)

694 .map(Jetx| match etx {

695 (tx, (Ok(()), nonce)) => {

696 let lamports_per_signature = nonce

697 .as_ref ()

698 .map(|nonce| nonce.lamports_per_signature())

699 .unwrap_or_else (|| {

700 hash_queue.get_lamports_per_signature(tx.
L, message().recent_blockhash())

701 B

702 let fee = if let Some(lamports_per_signature) =
L, lamports_per_signature {

703 Bank::calculate_fee(

704 tx.message (),

705 lamports_per_signature,

706 fee_structure,

707 feature_set.is_active (&

L, use_default_units_in_fee_calculation::id()),
708 Ifeature_set.is_active (&

26

FINDINGS & TECH DETAILS

L, remove_deprecated_request_unit_ix::id()),

709 feature_set.is_active (&
L, remove_congestion_multiplier_from_fee_calculation::id()),
710 feature_set.is_active (&
L, enable_request_heap_frame_ix::id()) || self.accounts_db.
L, expected_cluster_type() != ClusterType::MainnetBeta,
711 feature_set.is_active (&

L, add_set_tx_loaded_accounts_data_size_instruction::id()),
712 feature_set.is_active (&

L, include_loaded_accounts_data_size_in_fee_calculation::id()),
AE)

714 } else {

715 return (Err(TransactionError::
L, BlockhashNotFound), None);

716 };

717

718 let loaded_transaction = match self.

L, load_transaction_accounts(

719 ancestors,

720 tx,

721 fee,

yi error_counters,

723 rent_collector,

724 feature_set,

725 account_overrides,
726 in_reward_interval,

677 fn load_transaction_accounts(

678 &self,

679 ancestors: &Ancestors,

680 tx: &SanitizedTransaction,

681 fee: u6b4,

682 error_counters: &mut TransactionErrorMetrics,
683 rent_collector: &RentCollector,

684 feature_set: &FeatureSet,

685 account_overrides: Option<&AccountOverrides>,
686 _reward_interval: RewardInterval,

687 program_accounts: &HashMap<Pubkey, &Pubkey>,
688 loaded_programs: &LoadedProgramsForTxBatch,
689

27

FINDINGS & TECH DETAILS

228 pub fn new_from_mmap(map: &Mmap) -> TsResult<&TieredStorageFooter>
L {

229 let offset = map.len().saturating_sub(FOOTER_TAIL_SIZE);
230 let (footer_size, offset) = get_type::<u64>(map, offset)?;
231 let (_footer_version, offset) = get_type::<u64>(map, offset)?;
232 let (magic_number, _offset) = get_type::<
L, TieredStorageMagicNumber >(map, offset)?;
233
234 if *magic_number != TieredStorageMagicNumber::default() {
235 return Err(TieredStorageError::MagicNumberMismatch (
236 TieredStorageMagicNumber::default() .o,
237 magic_number.Q,
PEL)
239 }
240
241 let (footer, _offset) =
242 get_type::<TieredStorageFooter >(map, map.len().
L, saturating_sub(*footer_size as usize))?;
243
244 Ok (footer)
245 }
BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation:

To ensure the robustness of a system, it is of utmost importance to
implement all necessary functionalities prior to undergoing an assessment.
This proactive approach helps to mitigate the possibility of encountering
unverified bugs or issues in future implementations. It is recommended
to complete all required functionalities, the system can be thoroughly
evaluated for security, reliability, and overall effectiveness.

28

FINDINGS & TECH DETAILS

Remediation Plan:

ACKNOWLEDGED: The Solana Labs team acknowledged this issue.

29

MANUAL TESTING

MANUAL TESTING

In the manual testing phase, the following scenarios were simulated.
The scenarios listed below were selected based on the severity of the
vulnerabilities Halborn was testing the code for.

5.1 IMPLICIT HANDLING OF DELAY
VISIBILITY TOMBSTONE AND USABLE
ENTRIES

Description:

In commit b20024c7

the is_implicit_delay_visibility_tombstone() function was introduced to
address the issue of duplicating code for handling delay visibility
tombstones in the transaction batch cache. This addition enables the
code to be refactored and consolidated, resulting in updated call sites.

In addition, in commit a649459f is_entry_usable was introduced to enhance
the extract() function. This newly added function serves as a mechanism to
filter and select suitable program entries. It evaluates the usability
of a program entry by considering factors such as expiration status,
matching criteria, and whether it is unloaded LoadedProgramType. By
utilizing is_entry_usable, the extract() function can efficiently filter
and choose appropriate program entries that meet the specified criteria.
This improvement ensures the extraction process is optimized and selects
only the desired program entries.

Thorough review and testing were conducted on these changes to guarantee
that the newly added features produce the desired and expected outcomes.

Results:

No vulnerabilities were identified.

31

https://github.com/solana-labs/solana/commit/b20024c7051597876604f7a50353c8a9a61bebab
https://github.com/solana-labs/solana/commit/a649459fc69618183f0a5d2e23a739c7beee2413

MANUAL TESTING

[+] Testing is implicit..
--->Tombstone Closed<---

effective slot: 3

deployment slot: 3

implicit delay in slot 3?7 : false
--->Tombstone FailedVerification<---
effective slot: 2

deployment slot: 2

implicit delay 1in slot 3?7 : false
--->Builtin<---

effective slot: 4

deployment slot: 3

implicit delay 1in slot 37? : false
--->Unloaded<---

effective slot: 4

deployment slot: 3

implicit delay 1in slot 3? : true
--->TestlLoaded<---

effective _slot: 4

deployment slot: 3

is implicit delay in slot 3? : true

test loaded programs::tests::test is implicit ...

ok

32

MANUAL TESTING

[*] Testing usable entries for Builting Porgram
current slot: ©

Match criteria: NoCriteria

entry not expiration

result entry usable?: true

current slot: 9

Match criteria: NoCriteria

entry not expiration

result entry usable?: true

current slot: 13

Match criteria: NoCriteria

entry not expiration

result entry usable?: true

current slot: ©

Match criteria: Tombstone

entry not expiration

result entry usable?: false

current slot: 9

Match criteria: Tombstone

entry not expiration

result entry usable?: false

current slot: ©

Match criteria: DeployedOnOrAfterSlot(0)
entry not expiration

result entry usable?: true

current slot: 4

Match criteria: DeployedOnOrAfterSlot(12)
entry not expiration

result entry usable?: false

current slot: 13

Match criteria: DeployedOnOrAfterSlot(5)
entry not expiration

result entry usable?: false

current slot: 13

Match criteria: DeployedOnOrAfterSlot(3)
entry not expiration

result entry usable?: true

33

MANUAL TESTING

[*]Testing usable entries for Unloaded Program
current slot: ©

Match criteria: NoCriteria

entry not expiration

current slot: 1

Match criteria: NoCriteria

entry not expiration

current slot: 1

Match criteria: Tombstone

entry not expiration

current slot: 1

Match criteria: DeployedOnOrAfterSlot(0)
entry not expiration

[*]Testing usable entries for Tombstone Closed
current slot: ©

Match criteria: NoCriteria

entry not expiration

current slot: 1

Match criteria: Tombstone

entry not expiration

current slot: 1

Match criteria: NoCriteria

entry not expiration

current slot: 1

Match criteria: DeployedOnOrAfterSlot(0)
entry not expiration

current slot: 1

Match criteria: DeployedOnOrAfterSlot(1l)
entry not expiration

34

MANUAL TESTING

5.2 PRUNE ON FEATURE SET TRANSITION

Description:

In commit eb55a582e the latest updates involve two key modifications.
Firstly, the LoadedPrograms::prune_feature_set_transition() function was
added. Secondly, the Bank::apply_builtin_program_feature_transitions()

now includes a call to create_program_runtime_environment().

These changes were implemented to ensure that the cache remains up-to-
date by removing any obsolete entries following the feature transition.
However, it is worth noting that the updates do not include recompiling
the entries before reaching the epoch limit.

Thorough testing was conducted on these changes to ensure the cache really
remains current by eliminating any obsolete entries after a feature
transition. This testing was crucial to prevent inconsistencies and
vulnerabilities that could arise from outdated code not aligning with the
updated feature set, thereby mitigating the risks of unexpected behavior
and security loopholes.

Results:

No vulnerabilities were identified.

prune feature set transition

Entry program : LoadedProgramType::Unloaded

retain: false

Entry program : LoadedProgramType::FailedVerification
retain: false

Entry program : LoadedProgramType::TestlLoaded

retain: false

Prunes of loaded programs cache after prune: 3

cache empty?: true

35

https://github.com/solana-labs/solana/pull/31945/commits/e55a582e6fbfa6cdd6ac1b48ae638ae8ff2fe4ec

MANUAL TESTING

[+] Prune feature set transition...

Entry program
retain: true
Entry program
retain: false
Entry program
retain: true
Entry program
retain: true

"e

LoadedProgramType:
LoadedProgramType:
LoadedProgramType:

LoadedProgramType:

:Closed
:TestLoaded
:DelayVisibility

:Builtin

Prunes of loaded programs cache after prune: 1

36

MANUAL TESTING

5.3 PURGE INCOMPLETE BANK SNAPSHOTS

Description:

In commit 4dddc840 the purge_incomplete_bank_snapshots() function was
introduced, which serves the purpose of deleting all incomplete bank
snapshots during startup. This deletion process occurs only once for
both the validator and the general ledger tool. The addition of this
function addresses the issue of retaining unnecessary bank snapshots.
Once a snapshot is archived, the older snapshots become obsolete and no
longer serve any purpose.

Furthermore, bank snapshots include hard links to account archive files
to facilitate faster startup. However, if the accounts are stored on a
RAM disk, these snapshots can artificially occupy space. Hence, it is
crucial to promptly free up this space. The newly added function ensures
the efficient cleanup of incomplete bank snapshots, enabling resources
to be utilized optimally.

Several tests have been performed to ensure that the bank snapshots that
can be purged are indeed incomplete and adequate to avoid inconsistencies
as well as possible future vulnerabilities.

Results:

No vulnerabilities were identified.

[+] Testing purge incomplete bank snapshot for complete snapshots
getting bank snapshot directory for slot 1 ..

getting bank snapshot directory for slot 2 ..

getting bank snapshot directory for slot 3 ..

getting bank snapshot directory for slot 4 ..

[+] Purge incomplete bank snapshots

Bank snapshot directory read

bank snapshot status is complete?: true

bank snapshot status is complete?: true

bank snapshot status is complete?: true

bank snapshot status is complete?: true

bank snapshot directory for slot 1 exists after purging?: true
bank snapshot directory for slot 2 exists after purging?: true
bank snapshot directory for slot 3 exists after purging?: true
bank snapshot directory for slot 4 exists after purging?: true
test snapshot_utils::tests::test_purge_incomplete_bank_snapshots_expectFail_with_complete_snapshots ... ok

37

https://github.com/solana-labs/solana/pull/31555/commits/4dddc8405d8fbdd329121aa65d4ad338a5da73e9

MANUAL TESTING

5.4 LOADED PROGRAMS CACHE AND
TRANSACTION BATCH CACHE

Description:

In commit 8313409c changes were introduced in order to replace the usage
of the executor cache with the LoadedPrograms cache and update the trans-
action batch cache with the transaction results, among others. These
modifications aim to improve the efficiency and reliability of the system
by leveraging the LoadedPrograms cache and addressing various issues.

The mentioned code changes have undergone a thorough review and test-
ing process to ensure they are robust and minimize the potential for
vulnerabilities or security risks.

Results:

No vulnerabilities were identified.

[*]1Replenish

Programs Loaded for Tx Batch replenished

Default Programs Modified by Tx

Default Programs Updated only for global cache

[*] Process message

[*] New Invoke Conext

Program id: 1111111QLbz7JHiBTspS962RLKV8GndWFwiEaqKM
Program not precompile

Number of instruction accounts: 3

[¥*]Pushing the instruction account

[*]Pushing the instruction account

[¥*]Pushing the instruction account

[*]Process instruction

[*]Process executable chain

[*] Find in Programs Loaded for Tx Batch

Implicit delay visibility tombstone: false

Program entry effective and cloned!

Entry found from Porgrams Loaded for Tx Batch: LoadedProgramType::Closed

38

https://github.com/solana-labs/solana/pull/31462/commits/8313409c676dc8faf8bd0a3a9b062fa63978025b

AUTOMATED TESTING

AUTOMATED TESTING

6.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with the detection of
well-known security issues and vulnerabilities. Among the tools used was
cargo-audit, a security scanner for vulnerabilities reported to the Rust-
Sec Advisory Database. All vulnerabilities published in https://crates.io
are stored in a repository named The RustSec Advisory Database. cargo
audit is a human-readable version of the advisory database which performs
a scanning on Cargo.lock. Security Detections are only in scope. All
vulnerabilities shown here were already disclosed in the above report.
However, to better assist the developers maintaining this code, the au-
ditors are including the output with the dependencies tree, and this
is included in the cargo audit output to better know the dependencies
affected by unmaintained and vulnerable crates.

Results:
ID package Short Description
RUSTSEC-2020-0071 | time Potential segfault in the time crate
RUSTSEC-2023-0001 | tokio reject_remote_clients Configuration
corruption

40

https://github.com/time-rs/time/issues/293
https://rustsec.org/advisories/RUSTSEC-2023-0001

AUTOMATED TESTING

6.2 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of
well-known security issues and vulnerabilities. Among the tools used was
cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.

Results:

No unsafe code blocks were identified in the packages in scope and their
dependencies.

41

THANK YOU FOR CHOOSING

// HALBORN

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	MANUAL TESTING
	IMPLICIT HANDLING OF DELAY VISIBILITY TOMBSTONE AND USABLE ENTRIES
	Description
	Results

	PRUNE ON FEATURE SET TRANSITION
	Description
	Results

	PURGE INCOMPLETE BANK SNAPSHOTS
	Description
	Results

	LOADED PROGRAMS CACHE AND TRANSACTION BATCH CACHE
	Description
	Results

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results

