
Solana Labs -
Runtime 77a56b0

-> 124aaa9
L1 Security Assessment

Prepared by: Halborn

Date of Engagement: June 12th, 2023 - July 14th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 ASSESSMENT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

2 RISK METHODOLOGY 9

2.1 EXPLOITABILITY 10

2.2 IMPACT 11

2.3 SEVERITY COEFFICIENT 13

2.4 SCOPE 15

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 16

4 FINDINGS & TECH DETAILS 17

4.1 (HAL-01) MISSING CARGO OVERFLOW CHECKS - INFORMATIONAL(0.0) 19

Description 19

Code Location 19

BVSS 19

Recommendation 19

Remediation Plan 19

4.2 (HAL-02) OPEN TO-DO - INFORMATIONAL(0.0) 20

Description 20

Code Location 21

BVSS 23

Recommendation 23

1

Remediation Plan 23

4.3 (HAL-03) INCOMPLETE FUNCTIONALITY IMPLEMENTATION - INFORMA-

TIONAL(0.0) 24

Description 24

Code Location 25

BVSS 28

Recommendation 28

Remediation Plan 29

5 MANUAL TESTING 30

5.1 IMPLICIT HANDLING OF DELAY VISIBILITY TOMBSTONE AND USABLE EN-

TRIES 31

Description 31

Results 31

5.2 PRUNE ON FEATURE SET TRANSITION 35

Description 35

Results 35

5.3 PURGE INCOMPLETE BANK SNAPSHOTS 37

Description 37

Results 37

5.4 LOADED PROGRAMS CACHE AND TRANSACTION BATCH CACHE 38

Description 38

Results 38

6 AUTOMATED TESTING 39

6.1 AUTOMATED ANALYSIS 40

Description 40

2

Results 40

6.2 UNSAFE RUST CODE DETECTION 41

Description 41

Results 41

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 06/12/2023 Isabel Burruezo

0.2 Document Updates 07/11/2023 Isabel Burruezo

0.3 Draft Version 07/12/2023 Isabel Burruezo

0.4 Draft Review 07/12/2023 Piotr Cielas

0.5 Draft Review 07/12/2023 Gabi Urrutia

1.0 Remediation Plan 08/22/2023 Isabel Burruezo

1.1 Remediation Plan 08/30/2023 Isabel Burruezo

1.2 Remediation Plan Review 08/30/2023 Piotr Cielas

1.3 Remediation Plan Review 09/01/2023 Piotr Cielas

4

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Isabel Burruezo Halborn Isabel.Burruezo@halborn.com

Michael Smith Halborn Michael.Smith@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Isabel.Burruezo@halborn.com
mailto:Michael.Smith@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Solana is an open-source project implementing a new, high-performance,

permissionless blockchain. Changes in scope affected several modules,

the most important ones are briefly described. Sealevel, Solana’s par-

allel smart contracts runtime, is a concurrent transaction processor.

Transactions specify their data dependencies upfront, and dynamic memory

allocation is explicit. By separating program code from the state it

operates on, the runtime can choreograph concurrent access.

Halborn conducted a security assessment on a set of changes to the Solana

repository made between two different commits, beginning on June 12th,

2023 and ending on July 14th, 2023 . The security assessment was scoped

to the updates to the master branch of the solana GitHub repository.

Commit hashes and further details can be found in the Scope section of

this report.

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided five weeks for the engagement and assigned

a full-time security engineer to verify the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing and smart-contract hacking skills, and

deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn did not identify any significant issues; however,

some recommendations were given to reduce the likelihood and impact of

risks, which were acknowledged by the Solana Labs team.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of a manual review of the source code and

automated security testing to balance efficiency, timeliness, practical-

ity, and accuracy in regard to the scope of the assessment. While manual

testing is recommended to uncover flaws in business logic, processes, and

implementation; automated testing techniques help enhance coverage and

can quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term

of the assessment:

• Research into the architecture, purpose, and use of the platform.

• Manual source code review to identify business logic issues.

• Mapping out possible attack vectors

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic vulnerabilities.

• Finding unsafe Rust code usage (cargo-geiger)

• Scanning dependencies for known vulnerabilities (cargo audit).

• Local runtime testing (solana-test-framework)

8

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

12

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

13

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

14

EX
EC

UT
IV

E
OV

ER
VI

EW

2.4 SCOPE

Code repositories:

1. Solana L1

• Repository: solana

• start: 77a56b0

• final: 124aaa9

• Modules in scope:

1. program-runtime (solana/program-runtime/src)

2. runtime (solana/runtime/src)

3. bpf_loader (solana/programs/bpf_loader/src)

Out-of-scope:

- third-party libraries and dependencies

- financial-related attacks

15

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana
https://github.com/solana-labs/solana/commit/77a56b02eae5807465fbf1c8715a4b805f10c692
https://github.com/solana-labs/solana/commit/124aaa95f65aac9a037db85a1ce27724bd2012ff

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 3

16

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) MISSING CARGO OVERFLOW
CHECKS

Informational
(0.0)

NOT APPLICABLE

(HAL-02) OPEN TO-DO
Informational

(0.0)
ACKNOWLEDGED

(HAL-03) INCOMPLETE FUNCTIONALITY
IMPLEMENTATION

Informational
(0.0)

ACKNOWLEDGED

17

EX
EC

UT
IV

E
OV

ER
VI

EW

18

FINDINGS & TECH
DETAILS

4.1 (HAL-01) MISSING CARGO OVERFLOW
CHECKS - INFORMATIONAL (0.0)

Description:

We have noticed that the Cargo.toml file does not include the overflow-

checks=true setting. By default, overflow checks are disabled in op-

timized release builds. Consequently, if an overflow occurs in release

builds, it will be suppressed, resulting in unexpected application be-

havior. It is advisable to include the overflow-checks=true check in the

Cargo.toml file, even if checked arithmetic is employed using checked_

or saturating_* functions.

Code Location:

• program-runtime/Cargo.toml

• programs/bpf_loader/Cargo.toml

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation:

It is strongly advised to include the overflow-checks=true configuration

under the release profile within your Cargo.toml file.

Remediation Plan:

NOT APPLICABLE: The code in scope for this audit does not use unchecked

integer arithmetic, so Solana Labs has opted not to incur potential

performance penalties by enabling overflow checks.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.2 (HAL-02) OPEN TO-DO -
INFORMATIONAL (0.0)

Description:

The transaction priority detail code is responsible for determining the

priority and execution details of transactions in the network. The

get_transaction_priority_details function is responsible for calculating

and providing the priority details of a transaction. This information

helps nodes and validators determine how to process the transaction.

An open to-do item was discovered in the transaction_priority_details.rs

file.

The round_compute_unit_price_enabled parameter was introduced to the

get_transaction_priority_details() and process_compute_budget_instruction

() functions. However, currently, it is not utilized. Instead, a TODO

comment in the call to the process_instructions() function indicates

that it should be provided in the future.

Additionally, several other to-do items have been identified in the

following files:

• runtime/src/serde_snapshot/newer.rs

• runtime/src/bank.rs

While none of these to-dos are considered security risks, it is cru-

cial to implement all the required functionalities before undergoing an

assessment. This measure ensures that unverified bugs do not arise in

future implementations.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 1: runtime/src/transaction_priority_details.rs (Lines

19,24,34)

16 pub trait GetTransactionPriorityDetails {

17 fn get_transaction_priority_details(

18 &self ,

19 round_compute_unit_price_enabled: bool ,

20) -> Option <TransactionPriorityDetails >;

21

22 fn process_compute_budget_instruction <'a>(

23 instructions: impl Iterator <Item = (&'a Pubkey , &'a

ë CompiledInstruction)>,

24 _round_compute_unit_price_enabled: bool ,

25) -> Option <TransactionPriorityDetails > {

26 let mut compute_budget = ComputeBudget :: default ();

27 let prioritization_fee_details = compute_budget

28 .process_instructions(

29 instructions ,

30 true , // use default units per instruction

31 false , // stop supporting prioritization by

ë request_units_deprecated instruction

32 true , // enable request heap frame instruction

33 true , // enable support set accounts data size

ë instruction

34 // TODO: round_compute_unit_price_enabled:

ë bool

35)

36 .ok()?;

37 Some(TransactionPriorityDetails {

38 priority: prioritization_fee_details.get_priority (),

39 compute_unit_limit: compute_budget.compute_unit_limit ,

40 })

Listing 2: runtime/src/serde_snapshot/newer.rs (Line 218)

205 let epoch_reward_status = serializable_bank

206 .bank

207 .get_epoch_reward_status_to_serialize ();

208 match get_serialize_bank_fields(

209 SerializableVersionedBank ::from(fields),

210 SerializableAccountsDb ::<'a, Self > {

211 accounts_db: &serializable_bank.bank.rc.accounts.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

ë accounts_db ,

212 slot: serializable_bank.bank.rc.slot ,

213 account_storage_entries: serializable_bank.

ë snapshot_storages ,

214 phantom: std:: marker :: PhantomData :: default (),

215 },

216 // Additional fields , we manually store the lamps per

ë signature here so that

217 // we can grab it on restart.

218 // TODO: if we do a snapshot version bump , consider moving

ë this out.

219 lamports_per_signature ,

220 None::< BankIncrementalSnapshotPersistence >,

221 serializable_bank

222 .bank

223 .get_epoch_accounts_hash_to_serialize ()

224 .map(| epoch_accounts_hash| *epoch_accounts_hash.as_ref

ë ()),

225 epoch_reward_status ,

226) {

227 BankFieldsToSerialize :: WithoutEpochRewardStatus(data) =>

ë data.serialize(serializer),

228 BankFieldsToSerialize :: WithEpochRewardStatus(data) => data

ë .serialize(serializer),

229 }

Listing 3: runtime/src/bank.rs (Line 778)

777 is_delta ,

778 // TODO: Confirm if all these fields are intentionally

ë ignored!

779 builtin_programs: _,

780 runtime_config: _,

Listing 4: runtime/src/bank.rs (Lines 5583,5584)

5582 if !accounts_to_store.is_empty () {

5583 // TODO: Maybe do not call `store_accounts ()` here. Instead

ë return `accounts_to_store `

5584 // and have `collect_rent_in_partition ()` perform all the

ë stores.

5585 let (_, measure) = measure!(self.store_accounts ((

5586 self.slot(),

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

5587 &accounts_to_store [..],

5588 self.include_slot_in_hash ()

5589)));

5590 time_storing_accounts_us += measure.as_us ();

5591 }

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation:

Ensure that the pending to-do items are either implemented or evaluated

for removal if they will not be incorporated into future releases.

Remediation Plan:

ACKNOWLEDGED: The Solana Labs team acknowledged this issue.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.3 (HAL-03) INCOMPLETE
FUNCTIONALITY IMPLEMENTATION -
INFORMATIONAL (0.0)

Description:

In the accounts’ module of Solana, the RewardInterval enum was intro-

duced. In includes a variant called OutsideInterval, which represents

the slot in the epoch that falls outside the reward distribution in-

terval. This new enum value is used as a parameter in calls to func-

tions such as load_accounts_with_fee_and_rent(), load_accounts(), and

load_transaction_accounts().

It is important to note that the current implementation of this addition

does not introduce any changes to the runtime, as it is still a work

in progress. The RewardInterval enum is a preparatory step for future

updates, indicating that the implementation is underway but not yet fully

integrated or functional.

This still ongoing implementation also happens in the tiered accounts

storage module. Its purpose can be found explained in the proposal tiered-

accounts-db-storage; however, its implementation is still in progress and

until it is not finalized it is not possible to verify its full impact

as well as certain features such as the immutability of the account file

once it is created.

It is important to mention that this can also be found in part of the

partitioned epoch rewards implementation with the following functions in

the bank and metrics:

• report_partitioned_reward_metrics

• partitioned_epoch_rewards_config

• partitioned_rewards_stake_account_stores_per_block

• get_reward_calculation_num_blocks

• set_epoch_reward_status_active

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana/blob/067942d199790322bc8ca44e72feea0583736d92/docs/src/proposals/tiered-accounts-db-storage.md
https://github.com/solana-labs/solana/blob/067942d199790322bc8ca44e72feea0583736d92/docs/src/proposals/tiered-accounts-db-storage.md

Code Location:

Listing 5: runtime/src/accounts.rs

85 pub(crate) enum RewardInterval {

86 /// the slot within the epoch is OUTSIDE the reward

ë distribution interval

87 OutsideInterval ,

88 }

Listing 6: runtime/src/accounts.rs (Line 1556)

1523 fn load_accounts_with_fee_and_rent(

1524 tx: Transaction ,

1525 ka: &[TransactionAccount],

1526 lamports_per_signature: u64 ,

1527 rent_collector: &RentCollector ,

1528 error_counters: &mut TransactionErrorMetrics ,

1529 feature_set: &FeatureSet ,

1530 fee_structure: &FeeStructure ,

1531) -> Vec <TransactionLoadResult > {

1532 let mut hash_queue = BlockhashQueue ::new (100);

1533 hash_queue.register_hash (&tx.message ().recent_blockhash ,

ë lamports_per_signature);

1534 let accounts = Accounts :: new_with_config_for_tests(

1535 Vec::new(),

1536 &ClusterType :: Development ,

1537 AccountSecondaryIndexes :: default (),

1538 AccountShrinkThreshold :: default (),

1539);

1540 for ka in ka.iter() {

1541 accounts.store_for_tests (0, &ka.0, &ka.1);

1542 }

1543

1544 let ancestors = vec![(0, 0)]. into_iter ().collect ();

1545 let sanitized_tx = SanitizedTransaction ::

ë from_transaction_for_tests(tx);

1546 accounts.load_accounts(

1547 &ancestors ,

1548 &[sanitized_tx],

1549 vec![(Ok(()), None)],

1550 &hash_queue ,

1551 error_counters ,

1552 rent_collector ,

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

1553 feature_set ,

1554 fee_structure ,

1555 None ,

1556 RewardInterval :: OutsideInterval ,

1557 &HashMap ::new(),

1558 &LoadedProgramsForTxBatch :: default (),

Listing 7: runtime/src/accounts.rs (Lines 688,726)

677 pub(crate) fn load_accounts(

678 &self ,

679 ancestors: &Ancestors ,

680 txs: &[SanitizedTransaction],

681 lock_results: Vec <TransactionCheckResult >,

682 hash_queue: &BlockhashQueue ,

683 error_counters: &mut TransactionErrorMetrics ,

684 rent_collector: &RentCollector ,

685 feature_set: &FeatureSet ,

686 fee_structure: &FeeStructure ,

687 account_overrides: Option <& AccountOverrides >,

688 in_reward_interval: RewardInterval ,

689 program_accounts: &HashMap <Pubkey , &Pubkey >,

690 loaded_programs: &LoadedProgramsForTxBatch ,

691) -> Vec <TransactionLoadResult > {

692 txs.iter()

693 .zip(lock_results)

694 .map(|etx| match etx {

695 (tx , (Ok(()), nonce)) => {

696 let lamports_per_signature = nonce

697 .as_ref ()

698 .map(| nonce| nonce.lamports_per_signature ())

699 .unwrap_or_else (|| {

700 hash_queue.get_lamports_per_signature(tx.

ë message ().recent_blockhash ())

701 });

702 let fee = if let Some(lamports_per_signature) =

ë lamports_per_signature {

703 Bank:: calculate_fee(

704 tx.message (),

705 lamports_per_signature ,

706 fee_structure ,

707 feature_set.is_active (&

ë use_default_units_in_fee_calculation ::id()),

708 !feature_set.is_active (&

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

ë remove_deprecated_request_unit_ix ::id()),

709 feature_set.is_active (&

ë remove_congestion_multiplier_from_fee_calculation ::id()),

710 feature_set.is_active (&

ë enable_request_heap_frame_ix ::id()) || self.accounts_db.

ë expected_cluster_type () != ClusterType :: MainnetBeta ,

711 feature_set.is_active (&

ë add_set_tx_loaded_accounts_data_size_instruction ::id()),

712 feature_set.is_active (&

ë include_loaded_accounts_data_size_in_fee_calculation ::id()),

713)

714 } else {

715 return (Err(TransactionError ::

ë BlockhashNotFound), None);

716 };

717

718 let loaded_transaction = match self.

ë load_transaction_accounts(

719 ancestors ,

720 tx ,

721 fee ,

722 error_counters ,

723 rent_collector ,

724 feature_set ,

725 account_overrides ,

726 in_reward_interval ,

Listing 8: runtime/src/accounts.rs (Lines 686,726)

677 fn load_transaction_accounts(

678 &self ,

679 ancestors: &Ancestors ,

680 tx: &SanitizedTransaction ,

681 fee: u64 ,

682 error_counters: &mut TransactionErrorMetrics ,

683 rent_collector: &RentCollector ,

684 feature_set: &FeatureSet ,

685 account_overrides: Option <& AccountOverrides >,

686 _reward_interval: RewardInterval ,

687 program_accounts: &HashMap <Pubkey , &Pubkey >,

688 loaded_programs: &LoadedProgramsForTxBatch ,

689 ...

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 9: runtime/src/tiered_storage/footer.rs

228 pub fn new_from_mmap(map: &Mmap) -> TsResult <& TieredStorageFooter >

ë {

229 let offset = map.len().saturating_sub(FOOTER_TAIL_SIZE);

230 let (footer_size , offset) = get_type::<u64 >(map , offset)?;

231 let (_footer_version , offset) = get_type::<u64 >(map , offset)?;

232 let (magic_number , _offset) = get_type::<

ë TieredStorageMagicNumber >(map , offset)?;

233

234 if *magic_number != TieredStorageMagicNumber :: default () {

235 return Err(TieredStorageError :: MagicNumberMismatch(

236 TieredStorageMagicNumber :: default ().0,

237 magic_number .0,

238));

239 }

240

241 let (footer , _offset) =

242 get_type::< TieredStorageFooter >(map , map.len().

ë saturating_sub (* footer_size as usize))?;

243

244 Ok(footer)

245 }

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:F/S:U (0.0)

Recommendation:

To ensure the robustness of a system, it is of utmost importance to

implement all necessary functionalities prior to undergoing an assessment.

This proactive approach helps to mitigate the possibility of encountering

unverified bugs or issues in future implementations. It is recommended

to complete all required functionalities, the system can be thoroughly

evaluated for security, reliability, and overall effectiveness.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

ACKNOWLEDGED: The Solana Labs team acknowledged this issue.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

30

MANUAL TESTING

In the manual testing phase, the following scenarios were simulated.

The scenarios listed below were selected based on the severity of the

vulnerabilities Halborn was testing the code for.

5.1 IMPLICIT HANDLING OF DELAY
VISIBILITY TOMBSTONE AND USABLE
ENTRIES

Description:

In commit b20024c7

the is_implicit_delay_visibility_tombstone() function was introduced to

address the issue of duplicating code for handling delay visibility

tombstones in the transaction batch cache. This addition enables the

code to be refactored and consolidated, resulting in updated call sites.

In addition, in commit a649459f is_entry_usable was introduced to enhance

the extract() function. This newly added function serves as a mechanism to

filter and select suitable program entries. It evaluates the usability

of a program entry by considering factors such as expiration status,

matching criteria, and whether it is unloaded LoadedProgramType. By

utilizing is_entry_usable, the extract() function can efficiently filter

and choose appropriate program entries that meet the specified criteria.

This improvement ensures the extraction process is optimized and selects

only the desired program entries.

Thorough review and testing were conducted on these changes to guarantee

that the newly added features produce the desired and expected outcomes.

Results:

No vulnerabilities were identified.

31

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/commit/b20024c7051597876604f7a50353c8a9a61bebab
https://github.com/solana-labs/solana/commit/a649459fc69618183f0a5d2e23a739c7beee2413

32

MA
NU

AL
TE

ST
IN

G

33

MA
NU

AL
TE

ST
IN

G

34

MA
NU

AL
TE

ST
IN

G

5.2 PRUNE ON FEATURE SET TRANSITION

Description:

In commit e55a582e the latest updates involve two key modifications.

Firstly, the LoadedPrograms::prune_feature_set_transition() function was

added. Secondly, the Bank::apply_builtin_program_feature_transitions()

now includes a call to create_program_runtime_environment().

These changes were implemented to ensure that the cache remains up-to-

date by removing any obsolete entries following the feature transition.

However, it is worth noting that the updates do not include recompiling

the entries before reaching the epoch limit.

Thorough testing was conducted on these changes to ensure the cache really

remains current by eliminating any obsolete entries after a feature

transition. This testing was crucial to prevent inconsistencies and

vulnerabilities that could arise from outdated code not aligning with the

updated feature set, thereby mitigating the risks of unexpected behavior

and security loopholes.

Results:

No vulnerabilities were identified.

35

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/pull/31945/commits/e55a582e6fbfa6cdd6ac1b48ae638ae8ff2fe4ec

36

MA
NU

AL
TE

ST
IN

G

5.3 PURGE INCOMPLETE BANK SNAPSHOTS

Description:

In commit 4dddc840 the purge_incomplete_bank_snapshots() function was

introduced, which serves the purpose of deleting all incomplete bank

snapshots during startup. This deletion process occurs only once for

both the validator and the general ledger tool. The addition of this

function addresses the issue of retaining unnecessary bank snapshots.

Once a snapshot is archived, the older snapshots become obsolete and no

longer serve any purpose.

Furthermore, bank snapshots include hard links to account archive files

to facilitate faster startup. However, if the accounts are stored on a

RAM disk, these snapshots can artificially occupy space. Hence, it is

crucial to promptly free up this space. The newly added function ensures

the efficient cleanup of incomplete bank snapshots, enabling resources

to be utilized optimally.

Several tests have been performed to ensure that the bank snapshots that

can be purged are indeed incomplete and adequate to avoid inconsistencies

as well as possible future vulnerabilities.

Results:

No vulnerabilities were identified.

37

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/pull/31555/commits/4dddc8405d8fbdd329121aa65d4ad338a5da73e9

5.4 LOADED PROGRAMS CACHE AND
TRANSACTION BATCH CACHE

Description:

In commit 8313409c changes were introduced in order to replace the usage

of the executor cache with the LoadedPrograms cache and update the trans-

action batch cache with the transaction results, among others. These

modifications aim to improve the efficiency and reliability of the system

by leveraging the LoadedPrograms cache and addressing various issues.

The mentioned code changes have undergone a thorough review and test-

ing process to ensure they are robust and minimize the potential for

vulnerabilities or security risks.

Results:

No vulnerabilities were identified.

38

MA
NU

AL
TE

ST
IN

G

https://github.com/solana-labs/solana/pull/31462/commits/8313409c676dc8faf8bd0a3a9b062fa63978025b

39

AUTOMATED TESTING

6.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-audit, a security scanner for vulnerabilities reported to the Rust-

Sec Advisory Database. All vulnerabilities published in https://crates.io

are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs

a scanning on Cargo.lock. Security Detections are only in scope. All

vulnerabilities shown here were already disclosed in the above report.

However, to better assist the developers maintaining this code, the au-

ditors are including the output with the dependencies tree, and this

is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results:

ID package Short Description

RUSTSEC-2020-0071 time Potential segfault in the time crate

RUSTSEC-2023-0001 tokio reject_remote_clients Configuration

corruption

40

AU
TO

MA
TE

D
TE

ST
IN

G

https://github.com/time-rs/time/issues/293
https://rustsec.org/advisories/RUSTSEC-2023-0001

6.2 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.

Results:

No unsafe code blocks were identified in the packages in scope and their

dependencies.

41

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	MANUAL TESTING
	IMPLICIT HANDLING OF DELAY VISIBILITY TOMBSTONE AND USABLE ENTRIES
	Description
	Results

	PRUNE ON FEATURE SET TRANSITION
	Description
	Results

	PURGE INCOMPLETE BANK SNAPSHOTS
	Description
	Results

	LOADED PROGRAMS CACHE AND TRANSACTION BATCH CACHE
	Description
	Results

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results

