// HALBORN

Solana Foundation
- Durable Nonce
Patch

L1 Security Audit

Prepared by: Halborn
Date of Engagement: June 6th, 2022 - June 9th, 2022
Visit: Halborn.com


https://halborn.com

DOCUMENT REVISION HISTORY 2

CONTACTS 2
1 EXECUTIVE OVERVIEW 3
1.7 INTRODUCTION 4
1.2 AUDIT SUMMARY 4
1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 5
1.4 SCOPE 7
2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 8
3 FINDINGS & TECH DETAILS 9

3.1 (HAL-01) SUSCEPTIBLE TO RUST PANICS DUE TO UNSAFE UNWRAP USAGE -

INFORMATIONAL 11
Description 11
Code Location 11
Risk Level 11
Recommendation 12
Remediation Plan 12

3.2 (HAL-02) CONFUSING FUNCTION CALL CONVENTION - INFORMATIONAL 13

Description 13
Code Location 13
Risk Level 15
Recommendation 15

Remediation Plan 15



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 06/10/2022 Piotr Cielas
0.2 Draft Review 06/10/2022 Gabi Urrutia
1.0 Remediation Plan 06/15/2022 Piotr Cielas
1.1 Remediation Plan Review | 06/15/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn. com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Piotr Cielas Halborn Piotr.Cielas@halborn.com



mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com

EXECUTIVE OVERVIEW




EXECUTIVE OVERVIEW

1.7 INTRODUCTION

Solana Foundation engaged Halborn to conduct a security audit on their
pull requests, patching the Durable Nonce runtime bug beginning on June
6th, 2022 and ending on June 9th, 2022 .

Sealevel, Solana’s parallel smart contracts runtime, can process trans-
actions in parallel because Solana transactions describe all the states
a transaction will read or write while executing. This not only allows
for non-overlapping transactions to execute concurrently, but also for
transactions that are only reading the same state to execute concurrently
as well.

This security assessment was scoped to the implementation of the runtime
available in the solana GitHub repository. Commit hashes and further

details can be found in the Scope section of this report.

On-chain components were prioritized in this audit.

1.2 AUDIT SUMMARY

The team at Halborn was provided 3 days for the engagement and assigned 1
full-time security engineer to audit the security of the code in scope.
The security engineer is a blockchain and smart contract security expert
with advanced penetration testing and smart contract hacking skills, and
deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:
® Identify potential security issues within the pathes in scope.

In summary, Halborn identified some improvements to reduce the likelihood
and impact of risks, which should be addressed. The main ones are the
following:

- It is recommended not to use the unwrap function in the production


https://github.com/solana-labs/solana

EXECUTIVE OVERVIEW

environment because its use causes panic! and may crash the contract
without verbose error messages.
- Consider introducing new types with verbose names to better explain the

meaning of variables values.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated
security testing to balance efficiency, timeliness, practicality, and
accuracy in regard to the scope of the program audit. While manual testing
is recommended to uncover flaws in logic, process, and implementation;
automated testing techniques help enhance coverage of programs and can
quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term
of the audit:

® Research into the architecture, purpose, and use of the platform.
®* Manual program code review and walkthrough to identify logic issues.
Mapping out possible attack vectors

®* Thorough assessment of safety and usage of critical Rust variables
and functions in scope that could lead to arithmetic vulnerabilities.

® Local cluster deploying (solana-test-validator)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk
assessment methodology by measuring the LIKELIHOOD of a security incident
and the IMPACT should an incident occur. This framework works for commu-
nicating the characteristics and impacts of technology vulnerabilities.
The quantitative model ensures repeatable and accurate measurement while
enabling users to see the underlying vulnerability characteristics that



EXECUTIVE OVERVIEW

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

- N W h O
|

Almost cer
High proba
Potential

Low probab
Very unlik

tain an incident will occur.

bility of an incident occurring.

of a security incident in the long term.
ility of an incident occurring.

ely issue will cause an incident.

RISK SCALE - IMPACT

- N W O
|

May cause
May cause
May cause
May cause
May cause

devastating and unrecoverable impact or loss.
a significant level of impact or loss.

a partial impact or loss to many.

temporary impact or loss.

minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL

HIGH MEDIUM

10 - CRITICAL

9_

7
5_
3

8 - HIGH

6 - MEDIUM
4 - LOW

1 - VERY L

OW AND INFORMATIONAL



EXECUTIVE OVERVIEW

1.4 SCOPE

Code repositories:

1. Sealevel runtime

Repository: solana

Pull requests in scope:

. #25744
#25788
#25789
#24396
#25831

g~ w N =

Out-of-scope: External libraries and financial related attacks.


https://github.com/solana-labs/solana
https://github.com/solana-labs/solana/pull/25744
https://github.com/solana-labs/solana/pull/25788
https://github.com/solana-labs/solana/pull/25789
https://github.com/solana-labs/solana/pull/24396
https://github.com/solana-labs/solana/pull/25831

EXECUTIVE OVERVIEW

IMPACT

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL

HIGH

0

LIKELIHOOD




EXECUTIVE OVERVIEW

SECURITY ANALYSIS

SUSCEPTIBLE TO RUST PANICS DUE TO
UNSAFE UNWRAP USAGE

CONFUSING FUNCTION CALL CONVENTION

RISK LEVEL REMEDIATION DATE

ACKNOWLEDGED

FUTURE RELEASE




FINDINGS & TECH
DETAILS




FINDINGS & TECH DETAILS

3.1 (HAL-01) SUSCEPTIBLE TO RUST
PANICS DUE TO UNSAFE UNWRAP USAGE -
INFORMATIONAL

Description:
Pull Request: #25788

The use of helper methods in Rust, such as unwrap, is allowed in dev and
testing environment because those methods are supposed to throw an error
(also known as panic!) when called on Option::None or a Result which is
not Ok. However, keeping unwrap functions in production environment is
considered bad practice because they may lead to program crashes, which
are usually accompanied by insufficient or misleading error messages.

Code Location:

337 let nonce_versions = StateMut::<NonceVersions>::state(nonce.
L, account ()).unwrap();

338 if let NonceState::Initialized(ref data) = nonce_versions.state()
L {

339 let nonce_state = NonceState::new_initialized(

340 &data.authority,

341 durable_nonce,

342 lamports_per_signature,

343 );

344 let nonce_versions = NonceVersions::new(nonce_state,

L, separate_domains);
345 account.set_state(&nonce_versions).unwrap();

Risk Level:

Likelihood - 1
Impact - 2

11


https://github.com/solana-labs/solana/pull/25788

FINDINGS & TECH DETAILS

Recommendation:

It is recommended not to use the unwrap function in the production
environment because its use causes panic! and may crash the contract
without verbose error messages. Crashing the system will result in a
loss of availability and, in some cases, even private information stored
in the state. Some alternatives are possible, such as propagating the
error with ? instead of unwrapping, or using the error-chain crate for

errors.

Remediation Plan:

ACKNOWLEDGED: Pull requests did not introduce or modify those unwraps in
scope of this audit. Additionally, comments in the code state “Since we
know we are dealing with a valid nonce account unwrap is safe here”.

12



FINDINGS & TECH DETAILS

3.2 (HAL-02) CONFUSING FUNCTION
CALL CONVENTION - INFORMATIONAL

Description:
Pull Request: #25788

The patch changes definitions of several functions which previously re-
quired the caller to provide a DurableNonce and now require a tuple with
a DurableNonce and a boolean, indicating the separation of blockhash and
nonce domains.

If this boolean is set to true, DurableNonces are generated from a hash
of the most recent blockhash and a fixed seed to prevent transaction
replay.

This boolean parameter used is in multiple function calls across the
codebase and is usually accompanied by a comment. This inconsistency
might be confusing to developers unfamiliar with the bug and previous
nonce format, which may lead to them writing incorrect code.

Code Location:

196 res: &'a [TransactionExecutionResult],

197 loaded: &'a mut [TransactionlLoadResult],

198 rent_collector: &RentCollector,

199 durable_nonce: &(DurableNonce, /*separate_domains:=*/ bool),
200 lamports_per_signature: u64,

201 leave_nonce_on_success: bool,

228 execution_results: &'a [TransactionExecutionResult],

229 load_results: &'a mut [TransactionLoadResult],
230 rent_collector: &RentCollector,
231 durable_nonce: &(DurableNonce, /*xseparate_domains:*/ bool),

13


https://github.com/solana-labs/solana/pull/25788

FINDINGS & TECH DETAILS

232 lamports_per_signature: u64,
233 leave_nonce_on_success: bool,

315 execution_result: &Result<()>,
316 is_fee_payer: bool,
317 maybe_nonce: Option<(&'a NonceFull, bool)>,

319 lamports_per_signature: u64,
320 ) -> bool {

‘

20 let separate_nonce_from_blockhash = invoke_context

21 .feature_set

22 .is_active(&feature_set::separate_nonce_from_blockhash::id
L ),

23 let durable_nonce =

24 DurableNonce:: from_blockhash(&invoke_context.blockhash,

L, separate_nonce_from_blockhash);
25 (durable_nonce, separate_nonce_from_blockhash)

I o

20 let separate_nonce_from_blockhash = invoke_context

21 .feature_set

22 .is_active(&feature_set::separate_nonce_from_blockhash::id
L )

23 let durable_nonce =

24 DurableNonce:: from_blockhash(&invoke_context.blockhash,

L, separate_nonce_from_blockhash);
25 (durable_nonce, separate_nonce_from_blockhash)




FINDINGS & TECH DETAILS

Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

Consider introducing a new type with a verbose name to better explain the
meaning of the separate_domains variable value.

Remediation Plan:

PENDING: This is being tracked in a GitHub issue.

15


https://github.com/solana-labs/solana/issues/25950

THANK YOU FOR CHOOSING

// HALBORN




	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan



