
Solana Foundation
- Durable Nonce

Patch
L1 Security Audit

Prepared by: Halborn

Date of Engagement: June 6th, 2022 - June 9th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 2

CONTACTS 2

1 EXECUTIVE OVERVIEW 3

1.1 INTRODUCTION 4

1.2 AUDIT SUMMARY 4

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 5

1.4 SCOPE 7

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 8

3 FINDINGS & TECH DETAILS 9

3.1 (HAL-01) SUSCEPTIBLE TO RUST PANICS DUE TO UNSAFE UNWRAP USAGE -

INFORMATIONAL 11

Description 11

Code Location 11

Risk Level 11

Recommendation 12

Remediation Plan 12

3.2 (HAL-02) CONFUSING FUNCTION CALL CONVENTION - INFORMATIONAL 13

Description 13

Code Location 13

Risk Level 15

Recommendation 15

Remediation Plan 15

1

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 06/10/2022 Piotr Cielas

0.2 Draft Review 06/10/2022 Gabi Urrutia

1.0 Remediation Plan 06/15/2022 Piotr Cielas

1.1 Remediation Plan Review 06/15/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

2

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com

3

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Solana Foundation engaged Halborn to conduct a security audit on their

pull requests, patching the Durable Nonce runtime bug beginning on June

6th, 2022 and ending on June 9th, 2022 .

Sealevel, Solana’s parallel smart contracts runtime, can process trans-

actions in parallel because Solana transactions describe all the states

a transaction will read or write while executing. This not only allows

for non-overlapping transactions to execute concurrently, but also for

transactions that are only reading the same state to execute concurrently

as well.

This security assessment was scoped to the implementation of the runtime

available in the solana GitHub repository. Commit hashes and further

details can be found in the Scope section of this report.

On-chain components were prioritized in this audit.

1.2 AUDIT SUMMARY

The team at Halborn was provided 3 days for the engagement and assigned 1

full-time security engineer to audit the security of the code in scope.

The security engineer is a blockchain and smart contract security expert

with advanced penetration testing and smart contract hacking skills, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Identify potential security issues within the pathes in scope.

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which should be addressed. The main ones are the

following:

- It is recommended not to use the unwrap function in the production

4

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana

environment because its use causes panic! and may crash the contract

without verbose error messages.

- Consider introducing new types with verbose names to better explain the

meaning of variables values.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the program audit. While manual testing

is recommended to uncover flaws in logic, process, and implementation;

automated testing techniques help enhance coverage of programs and can

quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Manual program code review and walkthrough to identify logic issues.

• Mapping out possible attack vectors

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic vulnerabilities.

• Local cluster deploying (solana-test-validator)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

5

EX
EC

UT
IV

E
OV

ER
VI

EW

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

6

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

Code repositories:

1. Sealevel runtime

• Repository: solana

• Pull requests in scope:

1. #25744

2. #25788

3. #25789

4. #24396

5. #25831

Out-of-scope: External libraries and financial related attacks.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/solana-labs/solana
https://github.com/solana-labs/solana/pull/25744
https://github.com/solana-labs/solana/pull/25788
https://github.com/solana-labs/solana/pull/25789
https://github.com/solana-labs/solana/pull/24396
https://github.com/solana-labs/solana/pull/25831

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 2

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)

8

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

SUSCEPTIBLE TO RUST PANICS DUE TO
UNSAFE UNWRAP USAGE

Informational ACKNOWLEDGED

CONFUSING FUNCTION CALL CONVENTION Informational FUTURE RELEASE

9

EX
EC

UT
IV

E
OV

ER
VI

EW

10

FINDINGS & TECH
DETAILS

3.1 (HAL-01) SUSCEPTIBLE TO RUST
PANICS DUE TO UNSAFE UNWRAP USAGE -
INFORMATIONAL

Description:

Pull Request: #25788

The use of helper methods in Rust, such as unwrap, is allowed in dev and

testing environment because those methods are supposed to throw an error

(also known as panic!) when called on Option::None or a Result which is

not Ok. However, keeping unwrap functions in production environment is

considered bad practice because they may lead to program crashes, which

are usually accompanied by insufficient or misleading error messages.

Code Location:

Listing 1: runtime/src/accounts.rs (Lines 1337,1345)

1337 let nonce_versions = StateMut::<NonceVersions >:: state(nonce.

ë account ()).unwrap ();

1338 if let NonceState :: Initialized(ref data) = nonce_versions.state ()

ë {

1339 let nonce_state = NonceState :: new_initialized(

1340 &data.authority ,

1341 durable_nonce ,

1342 lamports_per_signature ,

1343);

1344 let nonce_versions = NonceVersions ::new(nonce_state ,

ë separate_domains);

1345 account.set_state (& nonce_versions).unwrap ();

Risk Level:

Likelihood - 1

Impact - 2

11

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana/pull/25788

Recommendation:

It is recommended not to use the unwrap function in the production

environment because its use causes panic! and may crash the contract

without verbose error messages. Crashing the system will result in a

loss of availability and, in some cases, even private information stored

in the state. Some alternatives are possible, such as propagating the

error with ? instead of unwrapping, or using the error-chain crate for

errors.

Remediation Plan:

ACKNOWLEDGED: Pull requests did not introduce or modify those unwraps in

scope of this audit. Additionally, comments in the code state “Since we

know we are dealing with a valid nonce account unwrap is safe here”.

12

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) CONFUSING FUNCTION
CALL CONVENTION - INFORMATIONAL

Description:

Pull Request: #25788

The patch changes definitions of several functions which previously re-

quired the caller to provide a DurableNonce and now require a tuple with

a DurableNonce and a boolean, indicating the separation of blockhash and

nonce domains.

If this boolean is set to true, DurableNonces are generated from a hash

of the most recent blockhash and a fixed seed to prevent transaction

replay.

This boolean parameter used is in multiple function calls across the

codebase and is usually accompanied by a comment. This inconsistency

might be confusing to developers unfamiliar with the bug and previous

nonce format, which may lead to them writing incorrect code.

Code Location:

Listing 2: runtime/src/accounts.rs (Line 1199)

1196 res: &'a [TransactionExecutionResult],

1197 loaded: &'a mut [TransactionLoadResult],

1198 rent_collector: &RentCollector ,

1199 durable_nonce: &(DurableNonce , /* separate_domains:*/ bool),

1200 lamports_per_signature: u64 ,

1201 leave_nonce_on_success: bool ,

Listing 3: runtime/src/accounts.rs (Line 1231)

1228 execution_results: &'a [TransactionExecutionResult],

1229 load_results: &'a mut [TransactionLoadResult],

1230 rent_collector: &RentCollector ,

1231 durable_nonce: &(DurableNonce , /* separate_domains:*/ bool),

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana/pull/25788

1232 lamports_per_signature: u64 ,

1233 leave_nonce_on_success: bool ,

Listing 4: runtime/src/accounts.rs (Line 1318)

1315 execution_result: &Result <() >,

1316 is_fee_payer: bool ,

1317 maybe_nonce: Option <(&'a NonceFull , bool)>,

1318 &(durable_nonce , separate_domains): &(DurableNonce , bool),

1319 lamports_per_signature: u64 ,

1320) -> bool {

Listing 5: runtime/src/nonce_keyed_account.rs (Line 19)

19 fn get_durable_nonce(invoke_context: &InvokeContext) -> (

ë DurableNonce , /* separate_domains:*/ bool) {

20 let separate_nonce_from_blockhash = invoke_context

21 .feature_set

22 .is_active (& feature_set :: separate_nonce_from_blockhash ::id

ë ());

23 let durable_nonce =

24 DurableNonce :: from_blockhash (& invoke_context.blockhash ,

ë separate_nonce_from_blockhash);

25 (durable_nonce , separate_nonce_from_blockhash)

Listing 6: runtime/src/nonce_keyed_account.rs (Line 19)

19 fn get_durable_nonce(invoke_context: &InvokeContext) -> (

ë DurableNonce , /* separate_domains:*/ bool) {

20 let separate_nonce_from_blockhash = invoke_context

21 .feature_set

22 .is_active (& feature_set :: separate_nonce_from_blockhash ::id

ë ());

23 let durable_nonce =

24 DurableNonce :: from_blockhash (& invoke_context.blockhash ,

ë separate_nonce_from_blockhash);

25 (durable_nonce , separate_nonce_from_blockhash)

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider introducing a new type with a verbose name to better explain the

meaning of the separate_domains variable value.

Remediation Plan:

PENDING: This is being tracked in a GitHub issue.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/solana-labs/solana/issues/25950

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

