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1.7 INTRODUCTION

Solana Foundation engaged Halborn to conduct a security audit on their
pull requests, patching the Durable Nonce runtime bug beginning on June
6th, 2022 and ending on June 9th, 2022 .

Sealevel, Solana’s parallel smart contracts runtime, can process trans-
actions in parallel because Solana transactions describe all the states
a transaction will read or write while executing. This not only allows
for non-overlapping transactions to execute concurrently, but also for
transactions that are only reading the same state to execute concurrently
as well.

This security assessment was scoped to the implementation of the runtime
available in the solana GitHub repository. Commit hashes and further

details can be found in the Scope section of this report.

On-chain components were prioritized in this audit.

1.2 AUDIT SUMMARY

The team at Halborn was provided 3 days for the engagement and assigned 1
full-time security engineer to audit the security of the code in scope.
The security engineer is a blockchain and smart contract security expert
with advanced penetration testing and smart contract hacking skills, and
deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:
® Identify potential security issues within the pathes in scope.

In summary, Halborn identified some improvements to reduce the likelihood
and impact of risks, which should be addressed. The main ones are the
following:

- It is recommended not to use the unwrap function in the production
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environment because its use causes panic! and may crash the contract
without verbose error messages.
- Consider introducing new types with verbose names to better explain the

meaning of variables values.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated
security testing to balance efficiency, timeliness, practicality, and
accuracy in regard to the scope of the program audit. While manual testing
is recommended to uncover flaws in logic, process, and implementation;
automated testing techniques help enhance coverage of programs and can
quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term
of the audit:

® Research into the architecture, purpose, and use of the platform.
®* Manual program code review and walkthrough to identify logic issues.
Mapping out possible attack vectors

®* Thorough assessment of safety and usage of critical Rust variables
and functions in scope that could lead to arithmetic vulnerabilities.

® Local cluster deploying (solana-test-validator)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk
assessment methodology by measuring the LIKELIHOOD of a security incident
and the IMPACT should an incident occur. This framework works for commu-
nicating the characteristics and impacts of technology vulnerabilities.
The quantitative model ensures repeatable and accurate measurement while
enabling users to see the underlying vulnerability characteristics that
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were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.
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1.4 SCOPE

Code repositories:

1. Sealevel runtime

Repository: solana

Pull requests in scope:

. #25744
#25788
#25789
#24396
#25831

g~ w N =

Out-of-scope: External libraries and financial related attacks.
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3.1 (HAL-01) SUSCEPTIBLE TO RUST
PANICS DUE TO UNSAFE UNWRAP USAGE -
INFORMATIONAL

Description:
Pull Request: #25788

The use of helper methods in Rust, such as unwrap, is allowed in dev and
testing environment because those methods are supposed to throw an error
(also known as panic!) when called on Option::None or a Result which is
not Ok. However, keeping unwrap functions in production environment is
considered bad practice because they may lead to program crashes, which
are usually accompanied by insufficient or misleading error messages.

Code Location:

337 let nonce_versions = StateMut::<NonceVersions>::state(nonce.
L, account ()).unwrap();

338 if let NonceState::Initialized(ref data) = nonce_versions.state()
L {

339 let nonce_state = NonceState::new_initialized(

340 &data.authority,

341 durable_nonce,

342 lamports_per_signature,

343 );

344 let nonce_versions = NonceVersions::new(nonce_state,

L, separate_domains);
345 account.set_state(&nonce_versions).unwrap();

Risk Level:

Likelihood - 1
Impact - 2

11
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Recommendation:

It is recommended not to use the unwrap function in the production
environment because its use causes panic! and may crash the contract
without verbose error messages. Crashing the system will result in a
loss of availability and, in some cases, even private information stored
in the state. Some alternatives are possible, such as propagating the
error with ? instead of unwrapping, or using the error-chain crate for

errors.

Remediation Plan:

ACKNOWLEDGED: Pull requests did not introduce or modify those unwraps in
scope of this audit. Additionally, comments in the code state “Since we
know we are dealing with a valid nonce account unwrap is safe here”.

12
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3.2 (HAL-02) CONFUSING FUNCTION
CALL CONVENTION - INFORMATIONAL

Description:
Pull Request: #25788

The patch changes definitions of several functions which previously re-
quired the caller to provide a DurableNonce and now require a tuple with
a DurableNonce and a boolean, indicating the separation of blockhash and
nonce domains.

If this boolean is set to true, DurableNonces are generated from a hash
of the most recent blockhash and a fixed seed to prevent transaction
replay.

This boolean parameter used is in multiple function calls across the
codebase and is usually accompanied by a comment. This inconsistency
might be confusing to developers unfamiliar with the bug and previous
nonce format, which may lead to them writing incorrect code.

Code Location:

196 res: &'a [TransactionExecutionResult],

197 loaded: &'a mut [TransactionlLoadResult],

198 rent_collector: &RentCollector,

199 durable_nonce: &(DurableNonce, /*separate_domains:=*/ bool),
200 lamports_per_signature: u64,

201 leave_nonce_on_success: bool,

228 execution_results: &'a [TransactionExecutionResult],

229 load_results: &'a mut [TransactionLoadResult],
230 rent_collector: &RentCollector,
231 durable_nonce: &(DurableNonce, /*xseparate_domains:*/ bool),

13
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232 lamports_per_signature: u64,
233 leave_nonce_on_success: bool,

315 execution_result: &Result<()>,
316 is_fee_payer: bool,
317 maybe_nonce: Option<(&'a NonceFull, bool)>,

319 lamports_per_signature: u64,
320 ) -> bool {

‘

20 let separate_nonce_from_blockhash = invoke_context

21 .feature_set

22 .is_active(&feature_set::separate_nonce_from_blockhash::id
L ),

23 let durable_nonce =

24 DurableNonce:: from_blockhash(&invoke_context.blockhash,

L, separate_nonce_from_blockhash);
25 (durable_nonce, separate_nonce_from_blockhash)

I o

20 let separate_nonce_from_blockhash = invoke_context

21 .feature_set

22 .is_active(&feature_set::separate_nonce_from_blockhash::id
L )

23 let durable_nonce =

24 DurableNonce:: from_blockhash(&invoke_context.blockhash,

L, separate_nonce_from_blockhash);
25 (durable_nonce, separate_nonce_from_blockhash)
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Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

Consider introducing a new type with a verbose name to better explain the
meaning of the separate_domains variable value.

Remediation Plan:

PENDING: This is being tracked in a GitHub issue.

15
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