| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- import urllib.request
- import zipfile
- import os
- from pathlib import Path
- import matplotlib.pyplot as plt
- from torch.utils.data import Dataset
- import torch
- import pandas as pd
- def download_and_unzip_spam_data(url, zip_path, extracted_path, data_file_path):
- if data_file_path.exists():
- print(f"{data_file_path} already exists. Skipping download and extraction.")
- return
- # Downloading the file
- with urllib.request.urlopen(url) as response:
- with open(zip_path, "wb") as out_file:
- out_file.write(response.read())
- # Unzipping the file
- with zipfile.ZipFile(zip_path, "r") as zip_ref:
- zip_ref.extractall(extracted_path)
- # Add .tsv file extension
- original_file_path = Path(extracted_path) / "SMSSpamCollection"
- os.rename(original_file_path, data_file_path)
- print(f"File downloaded and saved as {data_file_path}")
- def create_balanced_dataset(df):
- # Count the instances of "spam"
- num_spam = df[df["Label"] == "spam"].shape[0]
- # Randomly sample "ham" instances to match the number of "spam" instances
- ham_subset = df[df["Label"] == "ham"].sample(num_spam, random_state=123)
- # Combine ham "subset" with "spam"
- balanced_df = pd.concat([ham_subset, df[df["Label"] == "spam"]])
- return balanced_df
- def random_split(df, train_frac, validation_frac):
- # Shuffle the entire DataFrame
- df = df.sample(frac=1, random_state=123).reset_index(drop=True)
- # Calculate split indices
- train_end = int(len(df) * train_frac)
- validation_end = train_end + int(len(df) * validation_frac)
- # Split the DataFrame
- train_df = df[:train_end]
- validation_df = df[train_end:validation_end]
- test_df = df[validation_end:]
- return train_df, validation_df, test_df
- class SpamDataset(Dataset):
- def __init__(self, csv_file, tokenizer, max_length=None, pad_token_id=50256):
- self.data = pd.read_csv(csv_file)
- # Pre-tokenize texts
- self.encoded_texts = [
- tokenizer.encode(text) for text in self.data["Text"]
- ]
- if max_length is None:
- self.max_length = self._longest_encoded_length()
- else:
- self.max_length = max_length
- # Truncate sequences if they are longer than max_length
- self.encoded_texts = [
- encoded_text[:self.max_length]
- for encoded_text in self.encoded_texts
- ]
- # Pad sequences to the longest sequence
- self.encoded_texts = [
- encoded_text + [pad_token_id] * (self.max_length - len(encoded_text))
- for encoded_text in self.encoded_texts
- ]
- def __getitem__(self, index):
- encoded = self.encoded_texts[index]
- label = self.data.iloc[index]["Label"]
- return (
- torch.tensor(encoded, dtype=torch.long),
- torch.tensor(label, dtype=torch.long)
- )
- def __len__(self):
- return len(self.data)
- def _longest_encoded_length(self):
- max_length = 0
- for encoded_text in self.encoded_texts:
- encoded_length = len(encoded_text)
- if encoded_length > max_length:
- max_length = encoded_length
- return max_length
- # Note: A more pythonic version to implement this method
- # is the following, which is also used in the next chapter:
- # return max(len(encoded_text) for encoded_text in self.encoded_texts)
- def calc_accuracy_loader(data_loader, model, device, num_batches=None):
- model.eval()
- correct_predictions, num_examples = 0, 0
- if num_batches is None:
- num_batches = len(data_loader)
- else:
- num_batches = min(num_batches, len(data_loader))
- for i, (input_batch, target_batch) in enumerate(data_loader):
- if i < num_batches:
- input_batch, target_batch = input_batch.to(device), target_batch.to(device)
- with torch.no_grad():
- logits = model(input_batch)[:, -1, :] # Logits of last output token
- predicted_labels = torch.argmax(logits, dim=-1)
- num_examples += predicted_labels.shape[0]
- correct_predictions += (predicted_labels == target_batch).sum().item()
- else:
- break
- return correct_predictions / num_examples
- def calc_loss_batch(input_batch, target_batch, model, device):
- input_batch, target_batch = input_batch.to(device), target_batch.to(device)
- logits = model(input_batch)[:, -1, :] # Logits of last output token
- loss = torch.nn.functional.cross_entropy(logits, target_batch)
- return loss
- def calc_loss_loader(data_loader, model, device, num_batches=None):
- total_loss = 0.
- if len(data_loader) == 0:
- return float("nan")
- elif num_batches is None:
- num_batches = len(data_loader)
- else:
- # Reduce the number of batches to match the total number of batches in the data loader
- # if num_batches exceeds the number of batches in the data loader
- num_batches = min(num_batches, len(data_loader))
- for i, (input_batch, target_batch) in enumerate(data_loader):
- if i < num_batches:
- loss = calc_loss_batch(input_batch, target_batch, model, device)
- total_loss += loss.item()
- else:
- break
- return total_loss / num_batches
- def evaluate_model(model, train_loader, val_loader, device, eval_iter):
- model.eval()
- with torch.no_grad():
- train_loss = calc_loss_loader(train_loader, model, device, num_batches=eval_iter)
- val_loss = calc_loss_loader(val_loader, model, device, num_batches=eval_iter)
- model.train()
- return train_loss, val_loss
- def train_classifier_simple(model, train_loader, val_loader, optimizer, device, num_epochs,
- eval_freq, eval_iter):
- # Initialize lists to track losses and examples seen
- train_losses, val_losses, train_accs, val_accs = [], [], [], []
- examples_seen, global_step = 0, -1
- # Main training loop
- for epoch in range(num_epochs):
- model.train() # Set model to training mode
- for input_batch, target_batch in train_loader:
- optimizer.zero_grad() # Reset loss gradients from previous batch iteration
- loss = calc_loss_batch(input_batch, target_batch, model, device)
- loss.backward() # Calculate loss gradients
- optimizer.step() # Update model weights using loss gradients
- examples_seen += input_batch.shape[0] # New: track examples instead of tokens
- global_step += 1
- # Optional evaluation step
- if global_step % eval_freq == 0:
- train_loss, val_loss = evaluate_model(
- model, train_loader, val_loader, device, eval_iter)
- train_losses.append(train_loss)
- val_losses.append(val_loss)
- print(f"Ep {epoch+1} (Step {global_step:06d}): "
- f"Train loss {train_loss:.3f}, Val loss {val_loss:.3f}")
- # Calculate accuracy after each epoch
- train_accuracy = calc_accuracy_loader(train_loader, model, device, num_batches=eval_iter)
- val_accuracy = calc_accuracy_loader(val_loader, model, device, num_batches=eval_iter)
- print(f"Training accuracy: {train_accuracy*100:.2f}% | ", end="")
- print(f"Validation accuracy: {val_accuracy*100:.2f}%")
- train_accs.append(train_accuracy)
- val_accs.append(val_accuracy)
- return train_losses, val_losses, train_accs, val_accs, examples_seen
- def plot_values(epochs_seen, examples_seen, train_values, val_values, label="loss"):
- fig, ax1 = plt.subplots(figsize=(5, 3))
- # Plot training and validation loss against epochs
- ax1.plot(epochs_seen, train_values, label=f"Training {label}")
- ax1.plot(epochs_seen, val_values, linestyle="-.", label=f"Validation {label}")
- ax1.set_xlabel("Epochs")
- ax1.set_ylabel(label.capitalize())
- ax1.legend()
- # Create a second x-axis for examples seen
- ax2 = ax1.twiny() # Create a second x-axis that shares the same y-axis
- ax2.plot(examples_seen, train_values, alpha=0) # Invisible plot for aligning ticks
- ax2.set_xlabel("Examples seen")
- fig.tight_layout() # Adjust layout to make room
- plt.savefig(f"{label}-plot.pdf")
- plt.show()
- def classify_review(text, model, tokenizer, device, max_length=None, pad_token_id=50256):
- model.eval()
- # Prepare inputs to the model
- input_ids = tokenizer.encode(text)
- supported_context_length = model.pos_emb.weight.shape[0]
- # Note: In the book, this was originally written as pos_emb.weight.shape[1] by mistake
- # It didn't break the code but would have caused unnecessary truncation (to 768 instead of 1024)
- # Truncate sequences if they too long
- input_ids = input_ids[:min(max_length, supported_context_length)]
- # Pad sequences to the longest sequence
- input_ids += [pad_token_id] * (max_length - len(input_ids))
- input_tensor = torch.tensor(input_ids, device=device).unsqueeze(0) # add batch dimension
- # Model inference
- with torch.no_grad():
- logits = model(input_tensor)[:, -1, :] # Logits of the last output token
- predicted_label = torch.argmax(logits, dim=-1).item()
- # Return the classified result
- return "spam" if predicted_label == 1 else "not spam"
|