| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- #
- # This file collects all the relevant code that we covered thus far
- # throughout Chapters 2-5.
- # This file can be run as a standalone script.
- import numpy as np
- import tiktoken
- import torch
- import torch.nn as nn
- from torch.utils.data import Dataset, DataLoader
- #####################################
- # Chapter 2
- #####################################
- class GPTDatasetV1(Dataset):
- def __init__(self, txt, tokenizer, max_length, stride):
- self.input_ids = []
- self.target_ids = []
- # Tokenize the entire text
- token_ids = tokenizer.encode(txt, allowed_special={"<|endoftext|>"})
- # Use a sliding window to chunk the book into overlapping sequences of max_length
- for i in range(0, len(token_ids) - max_length, stride):
- input_chunk = token_ids[i:i + max_length]
- target_chunk = token_ids[i + 1: i + max_length + 1]
- self.input_ids.append(torch.tensor(input_chunk))
- self.target_ids.append(torch.tensor(target_chunk))
- def __len__(self):
- return len(self.input_ids)
- def __getitem__(self, idx):
- return self.input_ids[idx], self.target_ids[idx]
- def create_dataloader_v1(txt, batch_size=4, max_length=256,
- stride=128, shuffle=True, drop_last=True, num_workers=0):
- # Initialize the tokenizer
- tokenizer = tiktoken.get_encoding("gpt2")
- # Create dataset
- dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
- # Create dataloader
- dataloader = DataLoader(
- dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers)
- return dataloader
- #####################################
- # Chapter 3
- #####################################
- class MultiHeadAttention(nn.Module):
- def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
- super().__init__()
- assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
- self.d_out = d_out
- self.num_heads = num_heads
- self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
- self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
- self.dropout = nn.Dropout(dropout)
- self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
- def forward(self, x):
- b, num_tokens, d_in = x.shape
- keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
- queries = self.W_query(x)
- values = self.W_value(x)
- # We implicitly split the matrix by adding a `num_heads` dimension
- # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
- keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
- values = values.view(b, num_tokens, self.num_heads, self.head_dim)
- queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
- # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
- keys = keys.transpose(1, 2)
- queries = queries.transpose(1, 2)
- values = values.transpose(1, 2)
- # Compute scaled dot-product attention (aka self-attention) with a causal mask
- attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
- # Original mask truncated to the number of tokens and converted to boolean
- mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
- # Use the mask to fill attention scores
- attn_scores.masked_fill_(mask_bool, -torch.inf)
- attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
- attn_weights = self.dropout(attn_weights)
- # Shape: (b, num_tokens, num_heads, head_dim)
- context_vec = (attn_weights @ values).transpose(1, 2)
- # Combine heads, where self.d_out = self.num_heads * self.head_dim
- context_vec = context_vec.reshape(b, num_tokens, self.d_out)
- context_vec = self.out_proj(context_vec) # optional projection
- return context_vec
- #####################################
- # Chapter 4
- #####################################
- class LayerNorm(nn.Module):
- def __init__(self, emb_dim):
- super().__init__()
- self.eps = 1e-5
- self.scale = nn.Parameter(torch.ones(emb_dim))
- self.shift = nn.Parameter(torch.zeros(emb_dim))
- def forward(self, x):
- mean = x.mean(dim=-1, keepdim=True)
- var = x.var(dim=-1, keepdim=True, unbiased=False)
- norm_x = (x - mean) / torch.sqrt(var + self.eps)
- return self.scale * norm_x + self.shift
- class GELU(nn.Module):
- def __init__(self):
- super().__init__()
- def forward(self, x):
- return 0.5 * x * (1 + torch.tanh(
- torch.sqrt(torch.tensor(2.0 / torch.pi)) *
- (x + 0.044715 * torch.pow(x, 3))
- ))
- class FeedForward(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.layers = nn.Sequential(
- nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
- GELU(),
- nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
- )
- def forward(self, x):
- return self.layers(x)
- class TransformerBlock(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.att = MultiHeadAttention(
- d_in=cfg["emb_dim"],
- d_out=cfg["emb_dim"],
- context_length=cfg["context_length"],
- num_heads=cfg["n_heads"],
- dropout=cfg["drop_rate"],
- qkv_bias=cfg["qkv_bias"])
- self.ff = FeedForward(cfg)
- self.norm1 = LayerNorm(cfg["emb_dim"])
- self.norm2 = LayerNorm(cfg["emb_dim"])
- self.drop_resid = nn.Dropout(cfg["drop_rate"])
- def forward(self, x):
- # Shortcut connection for attention block
- shortcut = x
- x = self.norm1(x)
- x = self.att(x) # Shape [batch_size, num_tokens, emb_size]
- x = self.drop_resid(x)
- x = x + shortcut # Add the original input back
- # Shortcut connection for feed-forward block
- shortcut = x
- x = self.norm2(x)
- x = self.ff(x)
- x = self.drop_resid(x)
- x = x + shortcut # Add the original input back
- return x
- class GPTModel(nn.Module):
- def __init__(self, cfg):
- super().__init__()
- self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
- self.pos_emb = nn.Embedding(cfg["context_length"], cfg["emb_dim"])
- self.drop_emb = nn.Dropout(cfg["drop_rate"])
- self.trf_blocks = nn.Sequential(
- *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
- self.final_norm = LayerNorm(cfg["emb_dim"])
- self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
- def forward(self, in_idx):
- batch_size, seq_len = in_idx.shape
- tok_embeds = self.tok_emb(in_idx)
- pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
- x = tok_embeds + pos_embeds # Shape [batch_size, num_tokens, emb_size]
- x = self.drop_emb(x)
- x = self.trf_blocks(x)
- x = self.final_norm(x)
- logits = self.out_head(x)
- return logits
- def generate_text_simple(model, idx, max_new_tokens, context_size):
- # idx is (B, T) array of indices in the current context
- for _ in range(max_new_tokens):
- # Crop current context if it exceeds the supported context size
- # E.g., if LLM supports only 5 tokens, and the context size is 10
- # then only the last 5 tokens are used as context
- idx_cond = idx[:, -context_size:]
- # Get the predictions
- with torch.no_grad():
- logits = model(idx_cond)
- # Focus only on the last time step
- # (batch, n_token, vocab_size) becomes (batch, vocab_size)
- logits = logits[:, -1, :]
- # Get the idx of the vocab entry with the highest logits value
- idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch, 1)
- # Append sampled index to the running sequence
- idx = torch.cat((idx, idx_next), dim=1) # (batch, n_tokens+1)
- return idx
- #####################################
- # Chapter 5
- #####################################
- def assign(left, right):
- if left.shape != right.shape:
- raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
- return torch.nn.Parameter(torch.tensor(right))
- def load_weights_into_gpt(gpt, params):
- gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
- gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
- for b in range(len(params["blocks"])):
- q_w, k_w, v_w = np.split(
- (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
- gpt.trf_blocks[b].att.W_query.weight = assign(
- gpt.trf_blocks[b].att.W_query.weight, q_w.T)
- gpt.trf_blocks[b].att.W_key.weight = assign(
- gpt.trf_blocks[b].att.W_key.weight, k_w.T)
- gpt.trf_blocks[b].att.W_value.weight = assign(
- gpt.trf_blocks[b].att.W_value.weight, v_w.T)
- q_b, k_b, v_b = np.split(
- (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
- gpt.trf_blocks[b].att.W_query.bias = assign(
- gpt.trf_blocks[b].att.W_query.bias, q_b)
- gpt.trf_blocks[b].att.W_key.bias = assign(
- gpt.trf_blocks[b].att.W_key.bias, k_b)
- gpt.trf_blocks[b].att.W_value.bias = assign(
- gpt.trf_blocks[b].att.W_value.bias, v_b)
- gpt.trf_blocks[b].att.out_proj.weight = assign(
- gpt.trf_blocks[b].att.out_proj.weight,
- params["blocks"][b]["attn"]["c_proj"]["w"].T)
- gpt.trf_blocks[b].att.out_proj.bias = assign(
- gpt.trf_blocks[b].att.out_proj.bias,
- params["blocks"][b]["attn"]["c_proj"]["b"])
- gpt.trf_blocks[b].ff.layers[0].weight = assign(
- gpt.trf_blocks[b].ff.layers[0].weight,
- params["blocks"][b]["mlp"]["c_fc"]["w"].T)
- gpt.trf_blocks[b].ff.layers[0].bias = assign(
- gpt.trf_blocks[b].ff.layers[0].bias,
- params["blocks"][b]["mlp"]["c_fc"]["b"])
- gpt.trf_blocks[b].ff.layers[2].weight = assign(
- gpt.trf_blocks[b].ff.layers[2].weight,
- params["blocks"][b]["mlp"]["c_proj"]["w"].T)
- gpt.trf_blocks[b].ff.layers[2].bias = assign(
- gpt.trf_blocks[b].ff.layers[2].bias,
- params["blocks"][b]["mlp"]["c_proj"]["b"])
- gpt.trf_blocks[b].norm1.scale = assign(
- gpt.trf_blocks[b].norm1.scale,
- params["blocks"][b]["ln_1"]["g"])
- gpt.trf_blocks[b].norm1.shift = assign(
- gpt.trf_blocks[b].norm1.shift,
- params["blocks"][b]["ln_1"]["b"])
- gpt.trf_blocks[b].norm2.scale = assign(
- gpt.trf_blocks[b].norm2.scale,
- params["blocks"][b]["ln_2"]["g"])
- gpt.trf_blocks[b].norm2.shift = assign(
- gpt.trf_blocks[b].norm2.shift,
- params["blocks"][b]["ln_2"]["b"])
- gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
- gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
- gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
- def text_to_token_ids(text, tokenizer):
- encoded = tokenizer.encode(text, allowed_special={'<|endoftext|>'})
- encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
- return encoded_tensor
- def token_ids_to_text(token_ids, tokenizer):
- flat = token_ids.squeeze(0) # remove batch dimension
- return tokenizer.decode(flat.tolist())
|