| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- """
- Script that processes the Project Gutenberg files into fewer larger files.
- """
- import argparse
- import os
- import re
- from tqdm import tqdm
- from gutenberg.src.cleanup import strip_headers
- def is_english(text, threshold=0.9):
- ascii_chars = sum(1 for c in text if ord(c) < 128)
- return ascii_chars / len(text) > threshold
- def combine_files(file_paths, target_dir, max_size_mb=500, separator="<|endoftext|>", fallback_encoding="latin1"):
- if not os.path.exists(target_dir):
- os.makedirs(target_dir)
- current_content = []
- current_size = 0
- file_counter = 1
- for file_path in tqdm(file_paths):
- try:
- with open(file_path, "r", encoding="utf-8") as file:
- content = file.read()
- except UnicodeDecodeError:
- # Attempt to read the file with a fallback encoding
- tqdm.write(f"Warning: UnicodeDecodeError encountered. Trying fallback encoding for {file_path}")
- with open(file_path, "r", encoding=fallback_encoding) as file:
- content = file.read()
- if not is_english(content):
- tqdm.write(f"Skipping {file_path} as it does not contain primarily English text.")
- continue
- content = strip_headers(content)
- # Regular expression to replace multiple blank lines with a single blank line
- content = re.sub(r'\n\s*\n', '\n\n', content)
- estimated_size = len(content.encode("utf-8"))
- if current_size + estimated_size > max_size_mb * 1024 * 1024:
- target_file_path = os.path.join(target_dir, f"combined_{file_counter}.txt")
- with open(target_file_path, "w", encoding="utf-8") as target_file:
- target_file.write(separator.join(current_content))
- file_counter += 1
- current_content = [content]
- current_size = estimated_size
- else:
- current_content.append(content)
- current_size += estimated_size
- if current_content:
- target_file_path = os.path.join(target_dir, f"combined_{file_counter}.txt")
- with open(target_file_path, "w", encoding="utf-8") as target_file:
- target_file.write(separator.join(current_content))
- return file_counter
- if __name__ == "__main__":
- parser = argparse.ArgumentParser(description="Preprocess and combine text files for pretraining")
- parser.add_argument("--data_dir", type=str, default="gutenberg/data/raw",
- help="Directory containing the downloaded raw training data")
- parser.add_argument("--max_size_mb", type=int, default=500,
- help="The maximum file size for each concatenated file in megabytes")
- parser.add_argument("--output_dir", type=str, default="gutenberg_preprocessed",
- help="Directory where the preprocessed data will be saved")
- args = parser.parse_args()
- all_files = [os.path.join(path, name) for path, subdirs, files in os.walk(args.data_dir)
- for name in files if name.endswith((".txt", ".txt.utf8"))]
- print(f"{len(all_files)} file(s) to process.")
- file_counter = combine_files(all_files, args.output_dir, max_size_mb=args.max_size_mb)
- print(f"{file_counter} file(s) saved in {os.path.abspath(args.output_dir)}")
|