| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- import os
- import urllib.request
- # import requests
- import json
- import numpy as np
- import tensorflow as tf
- from tqdm import tqdm
- def download_and_load_gpt2(model_size, models_dir):
- # Validate model size
- allowed_sizes = ("124M", "355M", "774M", "1558M")
- if model_size not in allowed_sizes:
- raise ValueError(f"Model size not in {allowed_sizes}")
- # Define paths
- model_dir = os.path.join(models_dir, model_size)
- base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
- backup_base_url = "https://f001.backblazeb2.com/file/LLMs-from-scratch/gpt2"
- filenames = [
- "checkpoint", "encoder.json", "hparams.json",
- "model.ckpt.data-00000-of-00001", "model.ckpt.index",
- "model.ckpt.meta", "vocab.bpe"
- ]
- # Download files
- os.makedirs(model_dir, exist_ok=True)
- for filename in filenames:
- file_url = os.path.join(base_url, model_size, filename)
- backup_url = os.path.join(backup_base_url, model_size, filename)
- file_path = os.path.join(model_dir, filename)
- download_file(file_url, file_path, backup_url)
- # Load settings and params
- tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
- settings = json.load(open(os.path.join(model_dir, "hparams.json"), "r", encoding="utf-8"))
- params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
- return settings, params
- def download_file(url, destination, backup_url=None):
- def _attempt_download(download_url):
- with urllib.request.urlopen(download_url) as response:
- # Get the total file size from headers, defaulting to 0 if not present
- file_size = int(response.headers.get("Content-Length", 0))
- # Check if file exists and has the same size
- if os.path.exists(destination):
- file_size_local = os.path.getsize(destination)
- if file_size == file_size_local:
- print(f"File already exists and is up-to-date: {destination}")
- return True # Indicate success without re-downloading
- block_size = 1024 # 1 Kilobyte
- # Initialize the progress bar with total file size
- progress_bar_description = os.path.basename(download_url)
- with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
- with open(destination, "wb") as file:
- while True:
- chunk = response.read(block_size)
- if not chunk:
- break
- file.write(chunk)
- progress_bar.update(len(chunk))
- return True
- try:
- if _attempt_download(url):
- return
- except (urllib.error.HTTPError, urllib.error.URLError):
- if backup_url is not None:
- print(f"Primary URL ({url}) failed. Attempting backup URL: {backup_url}")
- try:
- if _attempt_download(backup_url):
- return
- except urllib.error.HTTPError:
- pass
- # If we reach here, both attempts have failed
- error_message = (
- f"Failed to download from both primary URL ({url})"
- f"{' and backup URL (' + backup_url + ')' if backup_url else ''}."
- "\nCheck your internet connection or the file availability.\n"
- "For help, visit: https://github.com/rasbt/LLMs-from-scratch/discussions/273"
- )
- print(error_message)
- except Exception as e:
- print(f"An unexpected error occurred: {e}")
- # Alternative way using `requests`
- """
- def download_file(url, destination):
- # Send a GET request to download the file in streaming mode
- response = requests.get(url, stream=True)
- # Get the total file size from headers, defaulting to 0 if not present
- file_size = int(response.headers.get("content-length", 0))
- # Check if file exists and has the same size
- if os.path.exists(destination):
- file_size_local = os.path.getsize(destination)
- if file_size == file_size_local:
- print(f"File already exists and is up-to-date: {destination}")
- return
- # Define the block size for reading the file
- block_size = 1024 # 1 Kilobyte
- # Initialize the progress bar with total file size
- progress_bar_description = url.split("/")[-1] # Extract filename from URL
- with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
- # Open the destination file in binary write mode
- with open(destination, "wb") as file:
- # Iterate over the file data in chunks
- for chunk in response.iter_content(block_size):
- progress_bar.update(len(chunk)) # Update progress bar
- file.write(chunk) # Write the chunk to the file
- """
- def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
- # Initialize parameters dictionary with empty blocks for each layer
- params = {"blocks": [{} for _ in range(settings["n_layer"])]}
- # Iterate over each variable in the checkpoint
- for name, _ in tf.train.list_variables(ckpt_path):
- # Load the variable and remove singleton dimensions
- variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
- # Process the variable name to extract relevant parts
- variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix
- # Identify the target dictionary for the variable
- target_dict = params
- if variable_name_parts[0].startswith("h"):
- layer_number = int(variable_name_parts[0][1:])
- target_dict = params["blocks"][layer_number]
- # Recursively access or create nested dictionaries
- for key in variable_name_parts[1:-1]:
- target_dict = target_dict.setdefault(key, {})
- # Assign the variable array to the last key
- last_key = variable_name_parts[-1]
- target_dict[last_key] = variable_array
- return params
|