| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 |
- import os
- import sys
- import io
- import nbformat
- import types
- import pytest
- import tiktoken
- def import_definitions_from_notebook(fullname, names):
- """Loads function definitions from a Jupyter notebook file into a module."""
- path = os.path.join(os.path.dirname(__file__), fullname + ".ipynb")
- path = os.path.normpath(path)
- if not os.path.exists(path):
- raise FileNotFoundError(f"Notebook file not found at: {path}")
- with io.open(path, "r", encoding="utf-8") as f:
- nb = nbformat.read(f, as_version=4)
- mod = types.ModuleType(fullname)
- sys.modules[fullname] = mod
- # Execute all code cells to capture dependencies
- for cell in nb.cells:
- if cell.cell_type == "code":
- exec(cell.source, mod.__dict__)
- # Ensure required names are in module
- missing_names = [name for name in names if name not in mod.__dict__]
- if missing_names:
- raise ImportError(f"Missing definitions in notebook: {missing_names}")
- return mod
- @pytest.fixture(scope="module")
- def imported_module():
- fullname = "bpe-from-scratch"
- names = ["BPETokenizerSimple", "download_file_if_absent"]
- return import_definitions_from_notebook(fullname, names)
- @pytest.fixture(scope="module")
- def verdict_file(imported_module):
- """Fixture to handle downloading The Verdict file."""
- download_file_if_absent = getattr(imported_module, "download_file_if_absent", None)
- verdict_path = download_file_if_absent(
- url=(
- "https://raw.githubusercontent.com/rasbt/"
- "LLMs-from-scratch/main/ch02/01_main-chapter-code/"
- "the-verdict.txt"
- ),
- filename="the-verdict.txt",
- search_dirs=["ch02/01_main-chapter-code/", "../01_main-chapter-code/", "."]
- )
- return verdict_path
- @pytest.fixture(scope="module")
- def gpt2_files(imported_module):
- """Fixture to handle downloading GPT-2 files."""
- download_file_if_absent = getattr(imported_module, "download_file_if_absent", None)
- search_directories = ["ch02/02_bonus_bytepair-encoder/gpt2_model/", "../02_bonus_bytepair-encoder/gpt2_model/", "."]
- files_to_download = {
- "https://openaipublic.blob.core.windows.net/gpt-2/models/124M/vocab.bpe": "vocab.bpe",
- "https://openaipublic.blob.core.windows.net/gpt-2/models/124M/encoder.json": "encoder.json"
- }
- paths = {filename: download_file_if_absent(url, filename, search_directories)
- for url, filename in files_to_download.items()}
- return paths
- def test_tokenizer_training(imported_module, verdict_file):
- BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
- tokenizer = BPETokenizerSimple()
- with open(verdict_file, "r", encoding="utf-8") as f: # added ../01_main-chapter-code/
- text = f.read()
- tokenizer.train(text, vocab_size=1000, allowed_special={"<|endoftext|>"})
- assert len(tokenizer.vocab) == 1000, "Tokenizer vocabulary size mismatch."
- assert len(tokenizer.bpe_merges) == 742, "Tokenizer BPE merges count mismatch."
- input_text = "Jack embraced beauty through art and life."
- token_ids = tokenizer.encode(input_text)
- assert token_ids == [424, 256, 654, 531, 302, 311, 256, 296, 97, 465, 121, 595, 841, 116, 287, 466, 256, 326, 972, 46], "Token IDs do not match expected output."
- assert tokenizer.decode(token_ids) == input_text, "Decoded text does not match the original input."
- tokenizer.save_vocab_and_merges(vocab_path="vocab.json", bpe_merges_path="bpe_merges.txt")
- tokenizer2 = BPETokenizerSimple()
- tokenizer2.load_vocab_and_merges(vocab_path="vocab.json", bpe_merges_path="bpe_merges.txt")
- assert tokenizer2.decode(token_ids) == input_text, "Decoded text mismatch after reloading tokenizer."
- def test_gpt2_tokenizer_openai_simple(imported_module, gpt2_files):
- BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
- tokenizer_gpt2 = BPETokenizerSimple()
- tokenizer_gpt2.load_vocab_and_merges_from_openai(
- vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
- )
- assert len(tokenizer_gpt2.vocab) == 50257, "GPT-2 tokenizer vocabulary size mismatch."
- input_text = "This is some text"
- token_ids = tokenizer_gpt2.encode(input_text)
- assert token_ids == [1212, 318, 617, 2420], "Tokenized output does not match expected GPT-2 encoding."
- def test_gpt2_tokenizer_openai_edgecases(imported_module, gpt2_files):
- BPETokenizerSimple = getattr(imported_module, "BPETokenizerSimple", None)
- tokenizer_gpt2 = BPETokenizerSimple()
- tokenizer_gpt2.load_vocab_and_merges_from_openai(
- vocab_path=gpt2_files["encoder.json"], bpe_merges_path=gpt2_files["vocab.bpe"]
- )
- tik_tokenizer = tiktoken.get_encoding("gpt2")
- test_cases = [
- ("Hello,", [15496, 11]),
- ("Implementations", [3546, 26908, 602]),
- ("asdf asdfasdf a!!, @aba 9asdf90asdfk", [292, 7568, 355, 7568, 292, 7568, 257, 3228, 11, 2488, 15498, 860, 292, 7568, 3829, 292, 7568, 74]),
- ("Hello, world. Is this-- a test?", [15496, 11, 995, 13, 1148, 428, 438, 257, 1332, 30])
- ]
- errors = []
- for input_text, expected_tokens in test_cases:
- tik_tokens = tik_tokenizer.encode(input_text)
- gpt2_tokens = tokenizer_gpt2.encode(input_text)
- print(f"Text: {input_text}")
- print(f"Expected Tokens: {expected_tokens}")
- print(f"tiktoken Output: {tik_tokens}")
- print(f"BPETokenizerSimple Output: {gpt2_tokens}")
- print("-" * 40)
- if tik_tokens != expected_tokens:
- errors.append(f"Tiktokenized output does not match expected GPT-2 encoding for '{input_text}'.\n"
- f"Expected: {expected_tokens}, Got: {tik_tokens}")
- if gpt2_tokens != expected_tokens:
- errors.append(f"Tokenized output does not match expected GPT-2 encoding for '{input_text}'.\n"
- f"Expected: {expected_tokens}, Got: {gpt2_tokens}")
- if errors:
- pytest.fail("\n".join(errors))
|