| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- import json
- import numpy as np
- import os
- import urllib.request
- # import requests
- import tensorflow as tf
- import tiktoken
- import torch
- from tqdm import tqdm
- # Import from local files
- from previous_chapters import GPTModel
- def text_to_token_ids(text, tokenizer):
- encoded = tokenizer.encode(text)
- encoded_tensor = torch.tensor(encoded).unsqueeze(0) # add batch dimension
- return encoded_tensor
- def token_ids_to_text(token_ids, tokenizer):
- flat = token_ids.squeeze(0) # remove batch dimension
- return tokenizer.decode(flat.tolist())
- def download_and_load_gpt2(model_size, models_dir):
- # Validate model size
- allowed_sizes = ("124M", "355M", "774M", "1558M")
- if model_size not in allowed_sizes:
- raise ValueError(f"Model size not in {allowed_sizes}")
- # Define paths
- model_dir = os.path.join(models_dir, model_size)
- base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
- filenames = [
- "checkpoint", "encoder.json", "hparams.json",
- "model.ckpt.data-00000-of-00001", "model.ckpt.index",
- "model.ckpt.meta", "vocab.bpe"
- ]
- # Download files
- os.makedirs(model_dir, exist_ok=True)
- for filename in filenames:
- file_url = os.path.join(base_url, model_size, filename)
- file_path = os.path.join(model_dir, filename)
- download_file(file_url, file_path)
- # Load settings and params
- tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
- settings = json.load(open(os.path.join(model_dir, "hparams.json")))
- params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
- return settings, params
- """
- def download_file(url, destination):
- # Send a GET request to download the file in streaming mode
- response = requests.get(url, stream=True)
- # Get the total file size from headers, defaulting to 0 if not present
- file_size = int(response.headers.get("content-length", 0))
- # Check if file exists and has the same size
- if os.path.exists(destination):
- file_size_local = os.path.getsize(destination)
- if file_size == file_size_local:
- print(f"File already exists and is up-to-date: {destination}")
- return
- # Define the block size for reading the file
- block_size = 1024 # 1 Kilobyte
- # Initialize the progress bar with total file size
- progress_bar_description = url.split("/")[-1] # Extract filename from URL
- with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
- # Open the destination file in binary write mode
- with open(destination, "wb") as file:
- # Iterate over the file data in chunks
- for chunk in response.iter_content(block_size):
- progress_bar.update(len(chunk)) # Update progress bar
- file.write(chunk) # Write the chunk to the file
- """
- def download_file(url, destination):
- # Send a GET request to download the file
- with urllib.request.urlopen(url) as response:
- # Get the total file size from headers, defaulting to 0 if not present
- file_size = int(response.headers.get("Content-Length", 0))
- # Check if file exists and has the same size
- if os.path.exists(destination):
- file_size_local = os.path.getsize(destination)
- if file_size == file_size_local:
- print(f"File already exists and is up-to-date: {destination}")
- return
- # Define the block size for reading the file
- block_size = 1024 # 1 Kilobyte
- # Initialize the progress bar with total file size
- progress_bar_description = os.path.basename(url) # Extract filename from URL
- with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
- # Open the destination file in binary write mode
- with open(destination, "wb") as file:
- # Read the file in chunks and write to destination
- while True:
- chunk = response.read(block_size)
- if not chunk:
- break
- file.write(chunk)
- progress_bar.update(len(chunk)) # Update progress bar
- def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
- # Initialize parameters dictionary with empty blocks for each layer
- params = {"blocks": [{} for _ in range(settings["n_layer"])]}
- # Iterate over each variable in the checkpoint
- for name, _ in tf.train.list_variables(ckpt_path):
- # Load the variable and remove singleton dimensions
- variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
- # Process the variable name to extract relevant parts
- variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix
- # Identify the target dictionary for the variable
- target_dict = params
- if variable_name_parts[0].startswith("h"):
- layer_number = int(variable_name_parts[0][1:])
- target_dict = params["blocks"][layer_number]
- # Recursively access or create nested dictionaries
- for key in variable_name_parts[1:-1]:
- target_dict = target_dict.setdefault(key, {})
- # Assign the variable array to the last key
- last_key = variable_name_parts[-1]
- target_dict[last_key] = variable_array
- return params
- def assign(left, right):
- if left.shape != right.shape:
- raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
- return torch.nn.Parameter(torch.tensor(right))
- def load_weights_into_gpt(gpt, params):
- gpt.pos_emb.weight = assign(gpt.pos_emb.weight, params['wpe'])
- gpt.tok_emb.weight = assign(gpt.tok_emb.weight, params['wte'])
- for b in range(len(params["blocks"])):
- q_w, k_w, v_w = np.split(
- (params["blocks"][b]["attn"]["c_attn"])["w"], 3, axis=-1)
- gpt.trf_blocks[b].att.W_query.weight = assign(
- gpt.trf_blocks[b].att.W_query.weight, q_w.T)
- gpt.trf_blocks[b].att.W_key.weight = assign(
- gpt.trf_blocks[b].att.W_key.weight, k_w.T)
- gpt.trf_blocks[b].att.W_value.weight = assign(
- gpt.trf_blocks[b].att.W_value.weight, v_w.T)
- q_b, k_b, v_b = np.split(
- (params["blocks"][b]["attn"]["c_attn"])["b"], 3, axis=-1)
- gpt.trf_blocks[b].att.W_query.bias = assign(
- gpt.trf_blocks[b].att.W_query.bias, q_b)
- gpt.trf_blocks[b].att.W_key.bias = assign(
- gpt.trf_blocks[b].att.W_key.bias, k_b)
- gpt.trf_blocks[b].att.W_value.bias = assign(
- gpt.trf_blocks[b].att.W_value.bias, v_b)
- gpt.trf_blocks[b].att.out_proj.weight = assign(
- gpt.trf_blocks[b].att.out_proj.weight,
- params["blocks"][b]["attn"]["c_proj"]["w"].T)
- gpt.trf_blocks[b].att.out_proj.bias = assign(
- gpt.trf_blocks[b].att.out_proj.bias,
- params["blocks"][b]["attn"]["c_proj"]["b"])
- gpt.trf_blocks[b].ff.layers[0].weight = assign(
- gpt.trf_blocks[b].ff.layers[0].weight,
- params["blocks"][b]["mlp"]["c_fc"]["w"].T)
- gpt.trf_blocks[b].ff.layers[0].bias = assign(
- gpt.trf_blocks[b].ff.layers[0].bias,
- params["blocks"][b]["mlp"]["c_fc"]["b"])
- gpt.trf_blocks[b].ff.layers[2].weight = assign(
- gpt.trf_blocks[b].ff.layers[2].weight,
- params["blocks"][b]["mlp"]["c_proj"]["w"].T)
- gpt.trf_blocks[b].ff.layers[2].bias = assign(
- gpt.trf_blocks[b].ff.layers[2].bias,
- params["blocks"][b]["mlp"]["c_proj"]["b"])
- gpt.trf_blocks[b].norm1.scale = assign(
- gpt.trf_blocks[b].norm1.scale,
- params["blocks"][b]["ln_1"]["g"])
- gpt.trf_blocks[b].norm1.shift = assign(
- gpt.trf_blocks[b].norm1.shift,
- params["blocks"][b]["ln_1"]["b"])
- gpt.trf_blocks[b].norm2.scale = assign(
- gpt.trf_blocks[b].norm2.scale,
- params["blocks"][b]["ln_2"]["g"])
- gpt.trf_blocks[b].norm2.shift = assign(
- gpt.trf_blocks[b].norm2.shift,
- params["blocks"][b]["ln_2"]["b"])
- gpt.final_norm.scale = assign(gpt.final_norm.scale, params["g"])
- gpt.final_norm.shift = assign(gpt.final_norm.shift, params["b"])
- gpt.out_head.weight = assign(gpt.out_head.weight, params["wte"])
- def generate(model, idx, max_new_tokens, context_size, temperature=0.0, top_k=None, eos_id=None):
- # For-loop is the same as before: Get logits, and only focus on last time step
- for _ in range(max_new_tokens):
- idx_cond = idx[:, -context_size:]
- with torch.no_grad():
- logits = model(idx_cond)
- logits = logits[:, -1, :]
- # New: Filter logits with top_k sampling
- if top_k is not None:
- # Keep only top_k values
- top_logits, _ = torch.topk(logits, top_k)
- min_val = top_logits[:, -1]
- logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
- # New: Apply temperature scaling
- if temperature > 0.0:
- logits = logits / temperature
- # Apply softmax to get probabilities
- probs = torch.softmax(logits, dim=-1) # (batch_size, context_len)
- # Sample from the distribution
- idx_next = torch.multinomial(probs, num_samples=1) # (batch_size, 1)
- # Otherwise same as before: get idx of the vocab entry with the highest logits value
- else:
- idx_next = torch.argmax(logits, dim=-1, keepdim=True) # (batch_size, 1)
- if idx_next == eos_id: # Stop generating early if end-of-sequence token is encountered and eos_id is specified
- break
- # Same as before: append sampled index to the running sequence
- idx = torch.cat((idx, idx_next), dim=1) # (batch_size, num_tokens+1)
- return idx
- def main(gpt_config, input_prompt, model_size):
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- settings, params = download_and_load_gpt2(model_size=model_size, models_dir="gpt2")
- gpt = GPTModel(gpt_config)
- load_weights_into_gpt(gpt, params)
- gpt.to(device)
- gpt.eval()
- tokenizer = tiktoken.get_encoding("gpt2")
- torch.manual_seed(123)
- token_ids = generate(
- model=gpt,
- idx=text_to_token_ids(input_prompt, tokenizer).to(device),
- max_new_tokens=25,
- context_size=gpt_config["context_length"],
- top_k=50,
- temperature=1.0
- )
- print("Output text:\n", token_ids_to_text(token_ids, tokenizer))
- if __name__ == "__main__":
- torch.manual_seed(123)
- CHOOSE_MODEL = "gpt2-small (124M)"
- INPUT_PROMPT = "Every effort moves you"
- BASE_CONFIG = {
- "vocab_size": 50257, # Vocabulary size
- "context_length": 1024, # Context length
- "drop_rate": 0.0, # Dropout rate
- "qkv_bias": True # Query-key-value bias
- }
- model_configs = {
- "gpt2-small (124M)": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
- "gpt2-medium (355M)": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
- "gpt2-large (774M)": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
- "gpt2-xl (1558M)": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
- }
- model_size = CHOOSE_MODEL.split(" ")[-1].lstrip("(").rstrip(")")
- BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
- main(BASE_CONFIG, INPUT_PROMPT, model_size)
|