| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- import itertools
- import math
- import os
- import tiktoken
- import torch
- from previous_chapters import GPTModel, create_dataloader_v1
- # Define a grid of hyperparameters to search over
- HPARAM_GRID = {
- "batch_size": [2, 4, 8, 16],
- "drop_rate": [0.0, 0.1, 0.2],
- "warmup_iters": [10, 20, 30],
- "weight_decay": [0.1, 0.01, 0.0],
- "peak_lr": [0.0001, 0.0005, 0.001, 0.005],
- "initial_lr": [0.00005, 0.0001],
- "min_lr": [0.00005, 0.00001, 0.0001],
- "n_epochs": [5, 10, 15, 20, 25],
- }
- def calc_loss_loader(data_loader, model, device, num_batches=None):
- total_loss = 0.
- if num_batches is None:
- num_batches = len(data_loader)
- else:
- num_batches = min(num_batches, len(data_loader))
- for i, (input_batch, target_batch) in enumerate(data_loader):
- if i < num_batches:
- loss = calc_loss_batch(input_batch, target_batch, model, device)
- total_loss += loss.item()
- else:
- break
- return total_loss / num_batches
- def calc_loss_batch(input_batch, target_batch, model, device):
- input_batch, target_batch = input_batch.to(device), target_batch.to(device)
- logits = model(input_batch)
- logits = logits.view(-1, logits.size(-1))
- loss = torch.nn.functional.cross_entropy(logits, target_batch.view(-1))
- return loss
- def evaluate_model(model, train_loader, val_loader, device, eval_iter):
- model.eval()
- with torch.no_grad():
- train_loss = calc_loss_loader(train_loader, model, device, num_iters=eval_iter)
- val_loss = calc_loss_loader(val_loader, model, device, num_iters=eval_iter)
- model.train()
- return train_loss, val_loss
- def train_model(model, train_loader, val_loader, optimizer, device,
- n_epochs, eval_freq, eval_iter,
- encoded_start_context, tokenizer, warmup_iters=10,
- initial_lr=3e-05, min_lr=1e-6):
- global_step = 0
- max_lr = optimizer.param_groups[0]["lr"]
- # Calculate total number of iterations
- total_training_iters = len(train_loader) * n_epochs
- # Calculate the learning rate increment at each step during warmup
- lr_increment = (optimizer.param_groups[0]["lr"] - initial_lr) / warmup_iters
- for epoch in range(n_epochs):
- model.train()
- for input_batch, target_batch in train_loader:
- optimizer.zero_grad()
- # Increment the global step at the beginning of the iteration
- global_step += 1
- # Warmup: adjust learning rate linearly
- if global_step < warmup_iters:
- lr = initial_lr + global_step * lr_increment
- # Cosine annealing phase
- else:
- progress = (global_step - warmup_iters) / (total_training_iters - warmup_iters)
- lr = min_lr + (max_lr - min_lr) * 0.5 * (1 + math.cos(math.pi * progress))
- # Apply the calculated learning rate
- for param_group in optimizer.param_groups:
- param_group["lr"] = lr
- loss = calc_loss_batch(input_batch, target_batch, model, device)
- loss.backward()
- # Apply gradient clipping
- if global_step >= warmup_iters:
- torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
- optimizer.step()
- train_loss, val_loss = evaluate_model(model, train_loader, val_loader, device, eval_iter)
- return train_loss, val_loss
- if __name__ == "__main__":
- # Generate all combinations of hyperparameters
- hyperparameter_combinations = list(itertools.product(*HPARAM_GRID.values()))
- total_combinations = len(hyperparameter_combinations)
- print(f"Total hyperparameter configurations: {total_combinations}")
- # Placeholder for the best loss and best hyperparameters
- best_val_loss = float('inf')
- best_hparams = {}
- script_path = os.path.abspath(__file__)
- script_dir = os.path.dirname(script_path)
- with open(os.path.join(script_dir, "the-verdict.txt"), "r", encoding="utf-8") as file:
- text_data = file.read()
- tokenizer = tiktoken.get_encoding("gpt2")
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- train_ratio = 0.95
- split_idx = int(train_ratio * len(text_data))
- torch.manual_seed(123)
- interrupted = False
- current_config = 0
- for combination in hyperparameter_combinations:
- try:
- current_config += 1
- print(f"Evaluating configuration {current_config} of {total_combinations}")
- # Unpack the current combination of hyperparameters
- HPARAM_CONFIG = dict(zip(HPARAM_GRID.keys(), combination))
- GPT_CONFIG_124M = {
- "vocab_size": 50257, # Vocabulary size
- "context_length": 256, # Context length -- shortened from original 1024 tokens
- "emb_dim": 768, # Embedding dimension
- "n_heads": 12, # Number of attention heads
- "n_layers": 12, # Number of layers
- "drop_rate": HPARAM_CONFIG["drop_rate"],
- "qkv_bias": False, # Query-Key-Value bias
- }
- torch.manual_seed(123)
- train_loader = create_dataloader_v1(
- text_data[:split_idx],
- batch_size=HPARAM_CONFIG["batch_size"],
- max_length=GPT_CONFIG_124M["context_length"],
- stride=GPT_CONFIG_124M["context_length"],
- drop_last=True,
- shuffle=True,
- num_workers=0
- )
- val_loader = create_dataloader_v1(
- text_data[split_idx:],
- batch_size=HPARAM_CONFIG["batch_size"],
- max_length=GPT_CONFIG_124M["context_length"],
- stride=GPT_CONFIG_124M["context_length"],
- drop_last=False,
- shuffle=False,
- num_workers=0
- )
- model = GPTModel(GPT_CONFIG_124M)
- model.to(device)
- optimizer = torch.optim.AdamW(
- model.parameters(),
- lr=HPARAM_CONFIG["peak_lr"],
- weight_decay=HPARAM_CONFIG["weight_decay"]
- )
- encoded_start_context = tokenizer.encode("Nevertheless")
- encoded_tensor = torch.tensor(encoded_start_context).unsqueeze(0)
- train_loss, val_loss = train_model(
- model, train_loader, val_loader, optimizer, device,
- n_epochs=HPARAM_CONFIG["n_epochs"],
- eval_freq=5, eval_iter=1,
- encoded_start_context=encoded_tensor,
- tokenizer=tokenizer,
- warmup_iters=HPARAM_CONFIG["warmup_iters"],
- initial_lr=HPARAM_CONFIG["initial_lr"],
- min_lr=HPARAM_CONFIG["min_lr"]
- )
- # Log the best hyperparameters based on validation loss
- if val_loss < best_val_loss:
- best_val_loss = val_loss
- best_train_loss = train_loss
- best_hparams = HPARAM_CONFIG
- except KeyboardInterrupt:
- print("Hyperparameter search completed.")
- print(f"Best hyperparameters: {best_hparams}")
- print(f"Best Val loss: {best_val_loss} | Training loss {train_loss}")
- interrupted = True
- break
- if not interrupted:
- print("Hyperparameter search completed.")
- print(f"Best hyperparameters: {best_hparams}")
- print(f"Best Val loss: {best_val_loss} | Training loss {train_loss}")
|