| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- # Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
- # Source for "Build a Large Language Model From Scratch"
- # - https://www.manning.com/books/build-a-large-language-model-from-scratch
- # Code: https://github.com/rasbt/LLMs-from-scratch
- import torch
- import torch.nn as nn
- class SelfAttention_v1(nn.Module):
- def __init__(self, d_in, d_out):
- super().__init__()
- self.W_query = nn.Parameter(torch.rand(d_in, d_out))
- self.W_key = nn.Parameter(torch.rand(d_in, d_out))
- self.W_value = nn.Parameter(torch.rand(d_in, d_out))
- def forward(self, x):
- keys = x @ self.W_key
- queries = x @ self.W_query
- values = x @ self.W_value
- attn_scores = queries @ keys.T # omega
- attn_weights = torch.softmax(
- attn_scores / keys.shape[-1]**0.5, dim=-1
- )
- context_vec = attn_weights @ values
- return context_vec
- class SelfAttention_v2(nn.Module):
- def __init__(self, d_in, d_out, qkv_bias=False):
- super().__init__()
- self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
- def forward(self, x):
- keys = self.W_key(x)
- queries = self.W_query(x)
- values = self.W_value(x)
- attn_scores = queries @ keys.T
- attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
- context_vec = attn_weights @ values
- return context_vec
- class CausalAttention(nn.Module):
- def __init__(self, d_in, d_out, context_length,
- dropout, qkv_bias=False):
- super().__init__()
- self.d_out = d_out
- self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.dropout = nn.Dropout(dropout) # New
- self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1)) # New
- def forward(self, x):
- b, num_tokens, d_in = x.shape # New batch dimension b
- # For inputs where `num_tokens` exceeds `context_length`, this will result in errors
- # in the mask creation further below.
- # In practice, this is not a problem since the LLM (chapters 4-7) ensures that inputs
- # do not exceed `context_length` before reaching this forward method.
- keys = self.W_key(x)
- queries = self.W_query(x)
- values = self.W_value(x)
- attn_scores = queries @ keys.transpose(1, 2) # Changed transpose
- attn_scores.masked_fill_( # New, _ ops are in-place
- self.mask.bool()[:num_tokens, :num_tokens], -torch.inf) # `:num_tokens` to account for cases where the number of tokens in the batch is smaller than the supported context_size
- attn_weights = torch.softmax(
- attn_scores / keys.shape[-1]**0.5, dim=-1
- )
- attn_weights = self.dropout(attn_weights) # New
- context_vec = attn_weights @ values
- return context_vec
- class MultiHeadAttentionWrapper(nn.Module):
- def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
- super().__init__()
- self.heads = nn.ModuleList(
- [CausalAttention(d_in, d_out, context_length, dropout, qkv_bias)
- for _ in range(num_heads)]
- )
- def forward(self, x):
- return torch.cat([head(x) for head in self.heads], dim=-1)
- class MultiHeadAttention(nn.Module):
- def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
- super().__init__()
- assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
- self.d_out = d_out
- self.num_heads = num_heads
- self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
- self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
- self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
- self.dropout = nn.Dropout(dropout)
- self.register_buffer('mask', torch.triu(torch.ones(context_length, context_length), diagonal=1))
- def forward(self, x):
- b, num_tokens, d_in = x.shape
- keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
- queries = self.W_query(x)
- values = self.W_value(x)
- # We implicitly split the matrix by adding a `num_heads` dimension
- # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
- keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
- values = values.view(b, num_tokens, self.num_heads, self.head_dim)
- queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
- # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
- keys = keys.transpose(1, 2)
- queries = queries.transpose(1, 2)
- values = values.transpose(1, 2)
- # Compute scaled dot-product attention (aka self-attention) with a causal mask
- attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
- # Original mask truncated to the number of tokens and converted to boolean
- mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
- # Use the mask to fill attention scores
- attn_scores.masked_fill_(mask_bool, -torch.inf)
- attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
- attn_weights = self.dropout(attn_weights)
- # Shape: (b, num_tokens, num_heads, head_dim)
- context_vec = (attn_weights @ values).transpose(1, 2)
- # Combine heads, where self.d_out = self.num_heads * self.head_dim
- context_vec = context_vec.reshape(b, num_tokens, self.d_out)
- context_vec = self.out_proj(context_vec) # optional projection
- return context_vec
|