| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- # Source: https://github.com/openai/gpt-2/blob/master/src/encoder.py
- # License:
- # Modified MIT License
- # Software Copyright (c) 2019 OpenAI
- # We don’t claim ownership of the content you create with GPT-2, so it is yours to do with as you please.
- # We only ask that you use GPT-2 responsibly and clearly indicate your content was created using GPT-2.
- # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
- # associated documentation files (the "Software"), to deal in the Software without restriction,
- # including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
- # and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
- # subject to the following conditions:
- # The above copyright notice and this permission notice shall be included
- # in all copies or substantial portions of the Software.
- # The above copyright notice and this permission notice need not be included
- # with content created by the Software.
- # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
- # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
- # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
- # OR OTHER DEALINGS IN THE SOFTWARE.
- import os
- import json
- import regex as re
- import requests
- from tqdm import tqdm
- from functools import lru_cache
- @lru_cache()
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a significant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- def get_pairs(word):
- """
- Return set of symbol pairs in a word.
- Word is represented as tuple of symbols (symbols being variable-length strings).
- """
- pairs = set()
- prev_char = word[0]
- for char in word[1:]:
- pairs.add((prev_char, char))
- prev_char = char
- return pairs
- class Encoder:
- def __init__(self, encoder, bpe_merges, errors='replace'):
- self.encoder = encoder
- self.decoder = {v: k for k, v in self.encoder.items()}
- self.errors = errors # how to handle errors in decoding
- self.byte_encoder = bytes_to_unicode()
- self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
- self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
- self.cache = {}
- # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
- self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
- def bpe(self, token):
- if token in self.cache:
- return self.cache[token]
- word = tuple(token)
- pairs = get_pairs(word)
- if not pairs:
- return token
- while True:
- bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf')))
- if bigram not in self.bpe_ranks:
- break
- first, second = bigram
- new_word = []
- i = 0
- while i < len(word):
- try:
- j = word.index(first, i)
- new_word.extend(word[i:j])
- i = j
- except ValueError:
- new_word.extend(word[i:])
- break
- if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
- new_word.append(first + second)
- i += 2
- else:
- new_word.append(word[i])
- i += 1
- new_word = tuple(new_word)
- word = new_word
- if len(word) == 1:
- break
- else:
- pairs = get_pairs(word)
- word = ' '.join(word)
- self.cache[token] = word
- return word
- def encode(self, text):
- bpe_tokens = []
- for token in re.findall(self.pat, text):
- token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
- bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
- return bpe_tokens
- def decode(self, tokens):
- text = ''.join([self.decoder[token] for token in tokens])
- text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
- return text
- def get_encoder(model_name, models_dir):
- with open(os.path.join(models_dir, model_name, 'encoder.json'), 'r') as f:
- encoder = json.load(f)
- with open(os.path.join(models_dir, model_name, 'vocab.bpe'), 'r', encoding="utf-8") as f:
- bpe_data = f.read()
- bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]]
- return Encoder(encoder=encoder, bpe_merges=bpe_merges)
- def download_vocab():
- # Modified code from
- subdir = 'gpt2_model'
- if not os.path.exists(subdir):
- os.makedirs(subdir)
- subdir = subdir.replace('\\', '/') # needed for Windows
- for filename in ['encoder.json', 'vocab.bpe']:
- r = requests.get("https://openaipublic.blob.core.windows.net/gpt-2/models/117M/" + filename, stream=True)
- with open(os.path.join(subdir, filename), 'wb') as f:
- file_size = int(r.headers["content-length"])
- chunk_size = 1000
- with tqdm(ncols=100, desc="Fetching " + filename, total=file_size, unit_scale=True) as pbar:
- # 1k for chunk_size, since Ethernet packet size is around 1500 bytes
- for chunk in r.iter_content(chunk_size=chunk_size):
- f.write(chunk)
- pbar.update(chunk_size)
|