| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- import os
- import requests
- import json
- import numpy as np
- import tensorflow as tf
- from tqdm import tqdm
- def download_and_load_gpt2(model_size, models_dir):
- # Validate model size
- allowed_sizes = ("124M", "355M", "774M", "1558M")
- if model_size not in allowed_sizes:
- raise ValueError(f"Model size not in {allowed_sizes}")
- # Define paths
- model_dir = os.path.join(models_dir, model_size)
- base_url = "https://openaipublic.blob.core.windows.net/gpt-2/models"
- filenames = [
- "checkpoint", "encoder.json", "settings.json",
- "model.ckpt.data-00000-of-00001", "model.ckpt.index",
- "model.ckpt.meta", "vocab.bpe"
- ]
- # Download files
- os.makedirs(model_dir, exist_ok=True)
- for filename in filenames:
- file_url = os.path.join(base_url, model_size, filename)
- file_path = os.path.join(model_dir, filename)
- download_file(file_url, file_path)
- # Load settings and params
- tf_ckpt_path = tf.train.latest_checkpoint(model_dir)
- settings = json.load(open(os.path.join(model_dir, "settings.json")))
- params = load_gpt2_params_from_tf_ckpt(tf_ckpt_path, settings)
- return settings, params
- def download_file(url, destination):
- # Send a GET request to download the file in streaming mode
- response = requests.get(url, stream=True)
- # Get the total file size from headers, defaulting to 0 if not present
- file_size = int(response.headers.get("content-length", 0))
- # Check if file exists and has the same size
- if os.path.exists(destination):
- file_size_local = os.path.getsize(destination)
- if file_size == file_size_local:
- print(f"File already exists and is up-to-date: {destination}")
- return
- # Define the block size for reading the file
- block_size = 1024 # 1 Kilobyte
- # Initialize the progress bar with total file size
- progress_bar_description = url.split("/")[-1] # Extract filename from URL
- with tqdm(total=file_size, unit="iB", unit_scale=True, desc=progress_bar_description) as progress_bar:
- # Open the destination file in binary write mode
- with open(destination, "wb") as file:
- # Iterate over the file data in chunks
- for chunk in response.iter_content(block_size):
- progress_bar.update(len(chunk)) # Update progress bar
- file.write(chunk) # Write the chunk to the file
- def load_gpt2_params_from_tf_ckpt(ckpt_path, settings):
- # Initialize parameters dictionary with empty blocks for each layer
- params = {"blocks": [{} for _ in range(settings["n_layer"])]}
- # Iterate over each variable in the checkpoint
- for name, _ in tf.train.list_variables(ckpt_path):
- # Load the variable and remove singleton dimensions
- variable_array = np.squeeze(tf.train.load_variable(ckpt_path, name))
- # Process the variable name to extract relevant parts
- variable_name_parts = name.split("/")[1:] # Skip the 'model/' prefix
- # Identify the target dictionary for the variable
- target_dict = params
- if variable_name_parts[0].startswith("h"):
- layer_number = int(variable_name_parts[0][1:])
- target_dict = params["blocks"][layer_number]
- # Recursively access or create nested dictionaries
- for key in variable_name_parts[1:-1]:
- target_dict = target_dict.setdefault(key, {})
- # Assign the variable array to the last key
- last_key = variable_name_parts[-1]
- target_dict[last_key] = variable_array
- return params
|